# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. import logging import sys,json import numpy as np def read_answers(filename): answers={} with open(filename) as f: for line in f: line=line.strip() js=json.loads(line) answers[js['url']]=js['idx'] return answers def read_predictions(filename): predictions={} with open(filename) as f: for line in f: line=line.strip() js=json.loads(line) predictions[js['url']]=js['answers'] return predictions def calculate_scores(answers,predictions): scores=[] for key in answers: if key not in predictions: logging.error("Missing prediction for url {}.".format(key)) sys.exit() flag=False for rank,idx in enumerate(predictions[key]): if idx==answers[key]: scores.append(1/(rank+1)) flag=True break if flag is False: scores.append(0) result={} result['MRR']=round(np.mean(scores),4) return result def main(): import argparse parser = argparse.ArgumentParser(description='Evaluate leaderboard predictions for NL-code-search-Adv dataset.') parser.add_argument('--answers', '-a',help="filename of the labels, in txt format.") parser.add_argument('--predictions', '-p',help="filename of the leaderboard predictions, in txt format.") args = parser.parse_args() answers=read_answers(args.answers) predictions=read_predictions(args.predictions) scores=calculate_scores(answers,predictions) print(scores) if __name__ == '__main__': main()