# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. import torch import torch.nn as nn import torch from torch.autograd import Variable import copy import torch.nn.functional as F from torch.nn import CrossEntropyLoss, MSELoss class Model(nn.Module): def __init__(self, encoder, config, tokenizer, args): super(Model, self).__init__() self.encoder = encoder self.config = config self.tokenizer = tokenizer self.args = args def forward(self, code_inputs, nl_inputs, return_vec=False, return_scores=False): bs = code_inputs.shape[0] inputs = torch.cat((code_inputs, nl_inputs), 0) encoder_output = self.encoder(inputs, attention_mask=inputs.ne(1)) outputs = encoder_output[1] code_vec = outputs[:bs] nl_vec = outputs[bs:] if return_vec: return code_vec, nl_vec scores = (nl_vec[:, None, :] * code_vec[None, :, :]).sum(-1) if return_scores: return scores loss_fct = CrossEntropyLoss() loss = loss_fct(scores, torch.arange(bs, device=scores.device)) return loss, code_vec, nl_vec def feature(self, code_inputs, nl_inputs): bs = code_inputs.shape[0] inputs = torch.cat((code_inputs, nl_inputs), 0) encoder_output = self.encoder(inputs, attention_mask=inputs.ne(1)) code_feature = encoder_output.pooler_output[:bs] nl_feature = encoder_output.pooler_output[bs:] return code_feature, nl_feature