# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. import logging import sys from sklearn.metrics import recall_score,precision_score,f1_score def read_answers(filename): answers={} with open(filename) as f: for line in f: line=line.strip() idx1,idx2,label=line.split() answers[(idx1,idx2)]=int(label) return answers def read_predictions(filename): predictions={} with open(filename) as f: for line in f: line=line.strip() idx1,idx2,label=line.split() predictions[(idx1,idx2)]=int(label) return predictions def calculate_scores(answers,predictions): y_trues,y_preds=[],[] for key in answers: if key not in predictions: logging.error("Missing prediction for ({},{}) pair.".format(key[0],key[1])) sys.exit() y_trues.append(answers[key]) y_preds.append(predictions[key]) scores={} scores['Recall']=recall_score(y_trues, y_preds) scores['Precision']=precision_score(y_trues, y_preds) scores['F1']=f1_score(y_trues, y_preds) return scores def main(): import argparse parser = argparse.ArgumentParser(description='Evaluate leaderboard predictions for BigCloneBench dataset.') parser.add_argument('--answers', '-a',help="filename of the labels, in txt format.") parser.add_argument('--predictions', '-p',help="filename of the leaderboard predictions, in txt format.") args = parser.parse_args() answers=read_answers(args.answers) predictions=read_predictions(args.predictions) scores=calculate_scores(answers,predictions) print(scores) if __name__ == '__main__': main()