# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. import math import torch import torch.nn as nn import torch.nn.functional as F class RNNModel(nn.Module): """Container module with an encoder, a recurrent module, and a decoder.""" def __init__(self, ntoken, ninp, nhid, nlayers, dropout=0.5, tie_weights=False): super(RNNModel, self).__init__() self.ntoken = ntoken self.drop = nn.Dropout(dropout) self.encoder = nn.Embedding(ntoken, ninp) self.rnn = nn.LSTM(ninp, nhid, nlayers, dropout=dropout, batch_first=True) self.decoder = nn.Linear(nhid, ntoken) self.criterion = nn.CrossEntropyLoss() # Optionally tie weights as in: # "Using the Output Embedding to Improve Language Models" (Press & Wolf 2016) # https://arxiv.org/abs/1608.05859 # and # "Tying Word Vectors and Word Classifiers: A Loss Framework for Language Modeling" (Inan et al. 2016) # https://arxiv.org/abs/1611.01462 if tie_weights: if nhid != ninp: raise ValueError('When using the tied flag, nhid must be equal to emsize') self.decoder.weight = self.encoder.weight self.init_weights() self.nhid = nhid self.nlayers = nlayers def init_weights(self): initrange = 0.1 nn.init.uniform_(self.encoder.weight, -initrange, initrange) nn.init.zeros_(self.decoder.weight) nn.init.uniform_(self.decoder.weight, -initrange, initrange) def forward(self, input, hidden=None, labels=None): emb = self.encoder(input) if hidden is not None: output, hidden = self.rnn(emb, hidden) else: output, hidden = self.rnn(emb) output = self.drop(output) output = self.decoder(output) # decoded = decoded.view(-1, self.ntoken) # output = F.log_softmax(decoded, dim=1) if labels is not None: shift_logits = output[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() loss = self.criterion(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) return loss, output, hidden else: return output, hidden def init_hidden(self, bsz): weight = next(self.parameters()) if self.rnn_type == 'LSTM': return (weight.new_zeros(self.nlayers, bsz, self.nhid), weight.new_zeros(self.nlayers, bsz, self.nhid)) else: return weight.new_zeros(self.nlayers, bsz, self.nhid)