''' VGG Networks in PyTorch VGG是由牛津大学Visual Geometry Group提出的一个深度卷积神经网络模型。 主要特点: 1. 使用小卷积核(3x3)代替大卷积核,降低参数量 2. 深层网络结构,多个卷积层叠加 3. 使用多个3x3卷积层的组合来代替大的感受野 4. 结构规整,易于扩展 网络结构示例(VGG16): input └─> [(Conv3x3, 64) × 2, MaxPool] └─> [(Conv3x3, 128) × 2, MaxPool] └─> [(Conv3x3, 256) × 3, MaxPool] └─> [(Conv3x3, 512) × 3, MaxPool] └─> [(Conv3x3, 512) × 3, MaxPool] └─> [AvgPool, Flatten] └─> FC(512, num_classes) 参考论文: [1] K. Simonyan and A. Zisserman, "Very Deep Convolutional Networks for Large-Scale Image Recognition," arXiv preprint arXiv:1409.1556, 2014. ''' import torch import torch.nn as nn # VGG配置参数 # M表示MaxPool层,数字表示输出通道数 cfg = { 'VGG11': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], 'VGG13': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], 'VGG16': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'], 'VGG19': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'], } class ConvBlock(nn.Module): """VGG的基本卷积块 包含: Conv2d -> BatchNorm -> ReLU 使用3x3卷积核,步长为1,padding为1以保持特征图大小不变 Args: in_channels (int): 输入通道数 out_channels (int): 输出通道数 batch_norm (bool): 是否使用BatchNorm,默认为True """ def __init__(self, in_channels, out_channels, batch_norm=True): super(ConvBlock, self).__init__() layers = [] # 3x3卷积,padding=1保持特征图大小不变 layers.append( nn.Conv2d( in_channels=in_channels, out_channels=out_channels, kernel_size=3, stride=1, padding=1 ) ) # 添加BatchNorm if batch_norm: layers.append(nn.BatchNorm2d(out_channels)) # ReLU激活函数 layers.append(nn.ReLU(inplace=True)) self.block = nn.Sequential(*layers) def forward(self, x): """前向传播 Args: x (torch.Tensor): 输入特征图 Returns: torch.Tensor: 输出特征图 """ return self.block(x) class VGG(nn.Module): """VGG网络模型 Args: vgg_name (str): VGG变体名称,可选VGG11/13/16/19 num_classes (int): 分类数量,默认为10 batch_norm (bool): 是否使用BatchNorm,默认为True init_weights (bool): 是否初始化权重,默认为True """ def __init__(self, vgg_name='VGG16', num_classes=10, batch_norm=True, init_weights=True): super(VGG, self).__init__() # 特征提取层 self.features = self._make_layers(cfg[vgg_name], batch_norm) # 全局平均池化 self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) # 分类器 self.classifier = nn.Sequential( nn.Linear(512, num_classes) ) # 初始化权重 if init_weights: self._initialize_weights() def _make_layers(self, cfg, batch_norm=True): """构建VGG的特征提取层 Args: cfg (List): 网络配置参数 batch_norm (bool): 是否使用BatchNorm Returns: nn.Sequential: 特征提取层序列 """ layers = [] in_channels = 3 for x in cfg: if x == 'M': # 最大池化层 layers.append(nn.MaxPool2d(kernel_size=2, stride=2)) else: # 卷积块 layers.append(ConvBlock(in_channels, x, batch_norm)) in_channels = x return nn.Sequential(*layers) def forward(self, x): """前向传播 Args: x (torch.Tensor): 输入图像张量,[N,3,H,W] Returns: torch.Tensor: 输出预测张量,[N,num_classes] """ # 特征提取 x = self.features(x) # 全局平均池化 x = self.avgpool(x) # 展平 x = torch.flatten(x, 1) # 分类 x = self.classifier(x) return x def _initialize_weights(self): """初始化模型权重 采用论文中的初始化方法: - 卷积层: xavier初始化 - BatchNorm: weight=1, bias=0 - 线性层: 正态分布初始化(std=0.01) """ for m in self.modules(): if isinstance(m, nn.Conv2d): # VGG论文中使用了xavier初始化 nn.init.xavier_normal_(m.weight) if m.bias is not None: nn.init.zeros_(m.bias) elif isinstance(m, nn.BatchNorm2d): nn.init.ones_(m.weight) nn.init.zeros_(m.bias) elif isinstance(m, nn.Linear): nn.init.normal_(m.weight, 0, 0.01) nn.init.zeros_(m.bias) def test(): """测试函数 创建VGG模型并进行前向传播测试,打印模型结构和参数信息 """ # 创建模型 net = VGG('VGG16') print('Model Structure:') print(net) # 测试前向传播 x = torch.randn(2, 3, 32, 32) y = net(x) print('\nInput Shape:', x.shape) print('Output Shape:', y.shape) # 打印模型信息 from torchinfo import summary device = 'cuda' if torch.cuda.is_available() else 'cpu' net = net.to(device) summary(net, (2, 3, 32, 32)) if __name__ == '__main__': test()