import torch import torch.nn as nn import torch.nn.functional as F class PatchEmbed(nn.Module): """ 将图像分成patch并进行embedding """ def __init__(self, img_size=32, patch_size=4, in_chans=3, embed_dim=96): super().__init__() self.img_size = img_size self.patch_size = patch_size self.n_patches = (img_size // patch_size) ** 2 self.proj = nn.Conv2d( in_chans, embed_dim, kernel_size=patch_size, stride=patch_size ) def forward(self, x): x = self.proj(x) # (B, E, H/P, W/P) x = x.flatten(2) # (B, E, N) x = x.transpose(1, 2) # (B, N, E) return x class Attention(nn.Module): """ 多头自注意力机制 """ def __init__(self, dim, n_heads=8, qkv_bias=True, attn_p=0., proj_p=0.): super().__init__() self.n_heads = n_heads self.dim = dim self.head_dim = dim // n_heads self.scale = self.head_dim ** -0.5 self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_p) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_p) def forward(self, x): n_samples, n_tokens, dim = x.shape if dim != self.dim: raise ValueError qkv = self.qkv(x) # (n_samples, n_patches + 1, 3 * dim) qkv = qkv.reshape( n_samples, n_tokens, 3, self.n_heads, self.head_dim ) # (n_samples, n_patches + 1, 3, n_heads, head_dim) qkv = qkv.permute(2, 0, 3, 1, 4) # (3, n_samples, n_heads, n_patches + 1, head_dim) q, k, v = qkv[0], qkv[1], qkv[2] # each with shape (n_samples, n_heads, n_patches + 1, head_dim) k_t = k.transpose(-2, -1) # (n_samples, n_heads, head_dim, n_patches + 1) dp = (q @ k_t) * self.scale # (n_samples, n_heads, n_patches + 1, n_patches + 1) attn = dp.softmax(dim=-1) # (n_samples, n_heads, n_patches + 1, n_patches + 1) attn = self.attn_drop(attn) weighted_avg = attn @ v # (n_samples, n_heads, n_patches + 1, head_dim) weighted_avg = weighted_avg.transpose(1, 2) # (n_samples, n_patches + 1, n_heads, head_dim) weighted_avg = weighted_avg.flatten(2) # (n_samples, n_patches + 1, dim) x = self.proj(weighted_avg) # (n_samples, n_patches + 1, dim) x = self.proj_drop(x) # (n_samples, n_patches + 1, dim) return x class MLP(nn.Module): """ 多层感知机 """ def __init__(self, in_features, hidden_features, out_features, p=0.): super().__init__() self.fc1 = nn.Linear(in_features, hidden_features) self.act = nn.GELU() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(p) def forward(self, x): x = self.fc1(x) # (n_samples, n_patches + 1, hidden_features) x = self.act(x) # (n_samples, n_patches + 1, hidden_features) x = self.drop(x) # (n_samples, n_patches + 1, hidden_features) x = self.fc2(x) # (n_samples, n_patches + 1, out_features) x = self.drop(x) # (n_samples, n_patches + 1, out_features) return x class Block(nn.Module): """ Transformer编码器块 """ def __init__(self, dim, n_heads, mlp_ratio=4.0, qkv_bias=True, p=0., attn_p=0.): super().__init__() self.norm1 = nn.LayerNorm(dim, eps=1e-6) self.attn = Attention( dim, n_heads=n_heads, qkv_bias=qkv_bias, attn_p=attn_p, proj_p=p ) self.norm2 = nn.LayerNorm(dim, eps=1e-6) hidden_features = int(dim * mlp_ratio) self.mlp = MLP( in_features=dim, hidden_features=hidden_features, out_features=dim, ) def forward(self, x): x = x + self.attn(self.norm1(x)) x = x + self.mlp(self.norm2(x)) return x class ViT(nn.Module): """ Vision Transformer """ def __init__( self, img_size=32, patch_size=4, in_chans=3, n_classes=10, embed_dim=96, depth=12, n_heads=8, mlp_ratio=4., qkv_bias=True, p=0., attn_p=0., ): super().__init__() self.patch_embed = PatchEmbed( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, ) self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) self.pos_embed = nn.Parameter( torch.zeros(1, 1 + self.patch_embed.n_patches, embed_dim) ) self.pos_drop = nn.Dropout(p=p) self.blocks = nn.ModuleList([ Block( dim=embed_dim, n_heads=n_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, p=p, attn_p=attn_p, ) for _ in range(depth) ]) self.norm = nn.LayerNorm(embed_dim, eps=1e-6) self.head = nn.Linear(embed_dim, n_classes) def forward(self, x): n_samples = x.shape[0] x = self.patch_embed(x) cls_token = self.cls_token.expand(n_samples, -1, -1) x = torch.cat((cls_token, x), dim=1) x = x + self.pos_embed x = self.pos_drop(x) for block in self.blocks: x = block(x) x = self.norm(x) cls_token_final = x[:, 0] x = self.head(cls_token_final) return x