{ "models": [ { "name": "Clone-detection-BigCloneBench", "tags": { "data_type": ["code"], "task_type": ["classification", "similarity"], "domain": ["code_clone_detection"], "input_type": "code_pair", "output_type": "binary" }, "original_path": "Code-Code/Clone-detection-BigCloneBench", "description": "基于大规模代码克隆基准数据集的代码克隆检测模型,任务是进行二元分类(0/1),其中1代表语义等价,0代表其他情况。", "dataset": "BigCloneBench数据集", "epoch": "待上传" }, { "name": "Clone-detection-POJ-104", "tags": { "data_type": ["code"], "task_type": ["retrieval", "similarity"], "domain": ["code_clone_detection"], "input_type": "code", "output_type": "code_ranking" }, "original_path": "Code-Code/Clone-detection-POJ-104", "description": "基于POJ-104数据集的代码克隆检测模型,任务是识别不同编程题目中相似的代码实现,给定一段代码和一组候选代码,任务是返回具有相同语义的Top K个代码", "dataset": "POJ-104编程题目数据集", "epoch": "待上传" }, { "name": "CodeCompletion-token", "tags": { "data_type": ["code"], "task_type": ["generation", "completion"], "domain": ["code_completion"], "input_type": "code_tokens", "output_type": "code_tokens" }, "original_path": "Code-Code/CodeCompletion-token", "description": "基于token级别的代码自动补全模型", "dataset": "Java代码token序列数据集", "epoch": "待上传" }, { "name": "Defect-detection", "tags": { "data_type": ["code"], "task_type": ["classification"], "domain": ["code_defect_detection"], "input_type": "code", "output_type": "binary" }, "original_path": "Code-Code/Defect-detection", "description": "代码缺陷检测模型,通过分析代码来识别潜在的缺陷和错误(进行二元分类(0/1))", "dataset": "包含缺陷标注的C语言代码数据集", "epoch": "待上传" }, { "name": "code-refinement", "tags": { "data_type": ["code"], "task_type": ["generation", "optimization"], "domain": ["code_optimization"], "input_type": "code", "output_type": "code" }, "original_path": "Code-Code/code-refinement", "description": "代码优化模型", "dataset": "代码优化前后对数据集(C语言)", "epoch": "待上传" }, { "name": "code-to-text", "tags": { "data_type": ["code", "text"], "task_type": ["generation", "translation"], "domain": ["code_documentation"], "input_type": "code", "output_type": "text" }, "original_path": "Code-Text/code-to-text", "description": "代码到自然语言的转换模型", "dataset": "多语言代码-文本对数据集", "epoch": "待上传" }, { "name": "NL-code-search-Adv", "tags": { "data_type": ["code", "text"], "task_type": ["retrieval", "search"], "domain": ["code_search"], "input_type": "text", "output_type": "code" }, "original_path": "Text-code/NL-code-search-Adv", "description": "高级自然语言代码搜索模型,通过计算自然语言查询与代码片段之间的相似性来实现代码搜索", "dataset": "自然语言-(python)代码对数据集", "epoch": "待上传" }, { "name": "NL-code-search-WebQuery", "tags": { "data_type": ["code", "text"], "task_type": ["retrieval", "search"], "domain": ["code_search"], "input_type": "text", "output_type": "code" }, "original_path": "Text-code/NL-code-search-WebQuery", "description": "基于Web查询的代码搜索模型,该模型通过编码器处理代码和自然语言输入,并利用多层感知器(MLP)来计算相似性得分", "dataset": "Web查询-代码对数据集(CodeSearchNet数据集和CoSQA数据集(python))", "epoch": "待上传" }, { "name": "text-to-code", "tags": { "data_type": ["code", "text"], "task_type": ["generation"], "domain": ["code_generation"], "input_type": "text", "output_type": "code" }, "original_path": "Text-code/text-to-code", "description": "自然语言到代码的生成模型", "dataset": "文本描述-代码(c语言)对数据集", "epoch": "待上传" }, { "name": "GraphMAE_QM9", "tags": { "data_type": ["graph"], "task_type": ["representation_learning", "autoencoder"], "domain": ["molecular_property"], "input_type": "molecular_graph", "output_type": "graph_embedding" }, "original_path": "Graph/GraphMAE_QM9", "description": "在QM9数据集上训练的图掩码自编码器,通过对分子图中的原子的坐标以及类型进行预测实现自监督训练", "dataset": "分子属性预测数据集", "epoch": "待上传" }, { "name": "AlexNet", "tags": { "data_type": ["image"], "task_type": ["classification"], "domain": ["computer_vision"], "input_type": "image", "output_type": "class_label" }, "original_path": "Image/AlexNet", "description": "2012年获得ImageNet冠军的经典模型,首次证明了深度学习在图像识别上的强大能力。", "dataset": "CIFAR-10数据集", "epoch": "待补充" }, { "name": "DenseNet", "tags": { "data_type": ["image"], "task_type": ["classification"], "domain": ["computer_vision"], "input_type": "image", "output_type": "class_label" }, "original_path": "Image/DenseNet", "description": "每一层都直接与其他所有层相连,像搭积木一样层层堆叠,可以更好地学习图像特征。", "dataset": "CIFAR-10数据集", "epoch": "待补充" }, { "name": "EfficientNet", "tags": { "data_type": ["image"], "task_type": ["classification"], "domain": ["computer_vision"], "input_type": "image", "output_type": "class_label" }, "original_path": "Image/EfficientNet", "description": "通过平衡网络的深度、宽度和图像分辨率,用更少的计算量达到更好的效果。", "dataset": "CIFAR-10数据集", "epoch": "待补充" }, { "name": "GoogLeNet", "tags": { "data_type": ["image"], "task_type": ["classification"], "domain": ["computer_vision"], "input_type": "image", "output_type": "class_label" }, "original_path": "Image/GoogLeNet", "description": "谷歌开发的模型,像多个眼睛同时看图片的不同部分,既省资源又准确。", "dataset": "CIFAR-10数据集", "epoch": "待补充" }, { "name": "LeNet5", "tags": { "data_type": ["image"], "task_type": ["classification"], "domain": ["computer_vision"], "input_type": "image", "output_type": "class_label" }, "original_path": "Image/LeNet5", "description": "深度学习领域的开山之作,虽然简单但奠定了现代CNN的基础架构。", "dataset": "CIFAR-10数据集", "epoch": "待补充" }, { "name": "MobileNetv1", "tags": { "data_type": ["image"], "task_type": ["classification"], "domain": ["computer_vision", "mobile_computing"], "input_type": "image", "output_type": "class_label" }, "original_path": "Image/MobileNetv1", "description": "专门为手机设计的轻量级模型,用特殊的卷积方式减少计算量。", "dataset": "CIFAR-10数据集", "epoch": "待补充" }, { "name": "MobileNetv2", "tags": { "data_type": ["image"], "task_type": ["classification"], "domain": ["computer_vision", "mobile_computing"], "input_type": "image", "output_type": "class_label" }, "original_path": "Image/MobileNetv2", "description": "MobileNet的升级版,增加了特征复用机制,性能更好。", "dataset": "CIFAR-10数据集", "epoch": "待补充" }, { "name": "MobileNetv3", "tags": { "data_type": ["image"], "task_type": ["classification"], "domain": ["computer_vision", "mobile_computing"], "input_type": "image", "output_type": "class_label" }, "original_path": "Image/MobileNetv3", "description": "结合自动搜索技术的新版本,自动找到最适合手机的网络结构。", "dataset": "CIFAR-10数据集", "epoch": "待补充" }, { "name": "ResNet", "tags": { "data_type": ["image"], "task_type": ["classification"], "domain": ["computer_vision"], "input_type": "image", "output_type": "class_label" }, "original_path": "Image/ResNet", "description": "通过特殊的快捷连接解决深层网络训练难的问题,可以训练超级深的网络。", "dataset": "CIFAR-10数据集", "epoch": "待补充" }, { "name": "SENet", "tags": { "data_type": ["image"], "task_type": ["classification"], "domain": ["computer_vision"], "input_type": "image", "output_type": "class_label" }, "original_path": "Image/SENet", "description": "为网络添加了注意力机制,让模型能够关注图片中重要的部分。", "dataset": "CIFAR-10数据集", "epoch": "待补充" }, { "name": "ShuffleNet", "tags": { "data_type": ["image"], "task_type": ["classification"], "domain": ["computer_vision", "mobile_computing"], "input_type": "image", "output_type": "class_label" }, "original_path": "Image/ShuffleNet", "description": "通过巧妙地打乱和分组计算,实现了手机上的高效运行。", "dataset": "CIFAR-10数据集", "epoch": "待补充" }, { "name": "ShuffleNetv2", "tags": { "data_type": ["image"], "task_type": ["classification"], "domain": ["computer_vision", "mobile_computing"], "input_type": "image", "output_type": "class_label" }, "original_path": "Image/ShuffleNetv2", "description": "在原版基础上优化设计,速度更快,效果更好。", "dataset": "CIFAR-10数据集", "epoch": "待补充" }, { "name": "SwinTransformer", "tags": { "data_type": ["image"], "task_type": ["classification"], "domain": ["computer_vision", "transformer"], "input_type": "image", "output_type": "class_label" }, "original_path": "Image/SwinTransformer", "description": "把自然语言处理的先进技术用于图像,通过逐步关注图片不同区域来理解图像。", "dataset": "CIFAR-10数据集", "epoch": "待补充" }, { "name": "VGG", "tags": { "data_type": ["image"], "task_type": ["classification"], "domain": ["computer_vision"], "input_type": "image", "output_type": "class_label" }, "original_path": "Image/VGG", "description": "用统一的小型卷积核堆叠成深层网络,结构简单但效果好。", "dataset": "CIFAR-10数据集", "epoch": "待补充" }, { "name": "ViT", "tags": { "data_type": ["image"], "task_type": ["classification"], "domain": ["computer_vision", "transformer"], "input_type": "image", "output_type": "class_label" }, "original_path": "Image/ViT", "description": "把图片切成小块后像读文章一样处理,是一种全新的图像处理方式。", "dataset": "CIFAR-10数据集", "epoch": "待补充" }, { "name": "ZFNet", "tags": { "data_type": ["image"], "task_type": ["classification"], "domain": ["computer_vision"], "input_type": "image", "output_type": "class_label" }, "original_path": "Image/ZFNet", "description": "通过可视化研究改进的AlexNet,帮助人们理解网络是如何看图片的。", "dataset": "CIFAR-10数据集", "epoch": "待补充" } ] }