import torch import torch.nn as nn import torch from torch.autograd import Variable import copy # from transformers.modeling_bert import BertLayerNorm import torch.nn.functional as F from torch.nn import CrossEntropyLoss, MSELoss # from transformers import (WEIGHTS_NAME, AdamW, get_linear_schedule_with_warmup, # BertConfig, BertForMaskedLM, BertTokenizer, # GPT2Config, GPT2LMHeadModel, GPT2Tokenizer, # OpenAIGPTConfig, OpenAIGPTLMHeadModel, OpenAIGPTTokenizer, # RobertaConfig, RobertaModel, RobertaTokenizer, # DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer) from transformers.modeling_utils import PreTrainedModel class Model(PreTrainedModel): def __init__(self, encoder, config, tokenizer, args): super(Model, self).__init__(config) self.encoder = encoder self.config = config self.tokenizer = tokenizer self.mlp = nn.Sequential(nn.Linear(768*4, 768), nn.Tanh(), nn.Linear(768, 1), nn.Sigmoid()) self.loss_func = nn.BCELoss() self.args = args def forward(self, code_inputs, nl_inputs, labels, return_vec=False, do_my_test=False): bs = code_inputs.shape[0] inputs = torch.cat((code_inputs, nl_inputs), 0) encoder_output = self.encoder(inputs, attention_mask=inputs.ne(1)) outputs = encoder_output[1] code_vec = outputs[:bs] nl_vec = outputs[bs:] code_feature = encoder_output.pooler_output[:bs] nl_feature = encoder_output.pooler_output[bs:] if return_vec: return code_vec, nl_vec logits = self.mlp(torch.cat((nl_vec, code_vec, nl_vec-code_vec, nl_vec*code_vec), 1)) loss = self.loss_func(logits, labels.float().unsqueeze(1)) if do_my_test: return loss, code_feature, nl_feature predictions = (logits > 0.5).int() # (Batch, ) # predictions = logits.float() return loss, predictions