''' LeNet5 in PyTorch LeNet5是由Yann LeCun等人在1998年提出的一个经典卷积神经网络模型。 主要用于手写数字识别,具有以下特点: 1. 使用卷积层提取特征 2. 使用平均池化层降低特征维度 3. 使用全连接层进行分类 4. 网络结构简单,参数量少 网络架构: 5x5 conv, 6 2x2 pool 5x5 conv, 16 2x2 pool FC 120 FC 84 FC 10 input(32x32x3) -> [conv1+relu+pool] --------> 28x28x6 -----> 14x14x6 -----> 10x10x16 -----> 5x5x16 -> 120 -> 84 -> 10 stride 1 stride 2 stride 1 stride 2 参考论文: [1] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition," Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, Nov. 1998. ''' import torch import torch.nn as nn import torch.nn.functional as F class ConvBlock(nn.Module): """卷积块模块 包含: 卷积层 -> ReLU -> 最大池化层 Args: in_channels (int): 输入通道数 out_channels (int): 输出通道数 kernel_size (int): 卷积核大小 stride (int): 卷积步长 padding (int): 填充大小 """ def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0): super(ConvBlock, self).__init__() self.conv = nn.Conv2d( in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding ) self.relu = nn.ReLU(inplace=True) # inplace操作可以节省内存 self.pool = nn.MaxPool2d(kernel_size=2, stride=2) def forward(self, x): """前向传播 Args: x (torch.Tensor): 输入特征图 Returns: torch.Tensor: 输出特征图 """ x = self.conv(x) x = self.relu(x) x = self.pool(x) return x class LeNet5(nn.Module): '''LeNet5网络模型 网络结构: 1. 卷积层1: 3通道输入,6个5x5卷积核,步长1 2. 最大池化层1: 2x2窗口,步长2 3. 卷积层2: 6通道输入,16个5x5卷积核,步长1 4. 最大池化层2: 2x2窗口,步长2 5. 全连接层1: 400->120 6. 全连接层2: 120->84 7. 全连接层3: 84->num_classes Args: num_classes (int): 分类数量,默认为10 init_weights (bool): 是否初始化权重,默认为True ''' def __init__(self, num_classes=10, init_weights=True): super(LeNet5, self).__init__() # 第一个卷积块: 32x32x3 -> 28x28x6 -> 14x14x6 self.conv1 = ConvBlock( in_channels=3, out_channels=6, kernel_size=5, stride=1 ) # 第二个卷积块: 14x14x6 -> 10x10x16 -> 5x5x16 self.conv2 = ConvBlock( in_channels=6, out_channels=16, kernel_size=5, stride=1 ) # 全连接层 self.classifier = nn.Sequential( nn.Linear(5*5*16, 120), nn.ReLU(inplace=True), nn.Linear(120, 84), nn.ReLU(inplace=True), nn.Linear(84, num_classes) ) # 初始化权重 if init_weights: self._initialize_weights() def forward(self, x): '''前向传播 Args: x (torch.Tensor): 输入图像张量,[N,3,32,32] Returns: torch.Tensor: 输出预测张量,[N,num_classes] ''' # 特征提取 x = self.conv1(x) # -> [N,6,14,14] x = self.conv2(x) # -> [N,16,5,5] # 分类 x = torch.flatten(x, 1) # -> [N,16*5*5] x = self.classifier(x) # -> [N,num_classes] return x def _initialize_weights(self): '''初始化模型权重 采用kaiming初始化方法: - 卷积层权重采用kaiming_normal_初始化 - 线性层权重采用normal_初始化 - 所有偏置项初始化为0 ''' for m in self.modules(): if isinstance(m, nn.Conv2d): # 采用kaiming初始化,适合ReLU激活函数 nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') if m.bias is not None: nn.init.zeros_(m.bias) elif isinstance(m, nn.Linear): # 采用正态分布初始化 nn.init.normal_(m.weight, 0, 0.01) nn.init.zeros_(m.bias) def test(): """测试函数 创建模型并进行前向传播测试,打印模型结构和参数信息 """ # 创建模型 net = LeNet5() print('Model Structure:') print(net) # 测试前向传播 x = torch.randn(2,3,32,32) y = net(x) print('\nInput Shape:', x.shape) print('Output Shape:', y.shape) # 打印模型信息 from torchinfo import summary device = 'cuda' if torch.cuda.is_available() else 'cpu' net = net.to(device) summary(net, (2,3,32,32)) if __name__ == '__main__': test()