import torch import torchvision import torchvision.transforms as transforms import os def get_cifar10_dataloaders(batch_size=128, num_workers=2, local_dataset_path=None): """获取CIFAR10数据集的数据加载器 Args: batch_size: 批次大小 num_workers: 数据加载的工作进程数 local_dataset_path: 本地数据集路径,如果提供则使用本地数据集,否则下载 Returns: trainloader: 训练数据加载器 testloader: 测试数据加载器 """ # 数据预处理 transform_train = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), ]) transform_test = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), ]) # 设置数据集路径 if local_dataset_path: print(f"使用本地数据集: {local_dataset_path}") download = False dataset_path = local_dataset_path else: print("未指定本地数据集路径,将下载数据集") download = True dataset_path = '../dataset' # 创建数据集路径 if not os.path.exists(dataset_path): os.makedirs(dataset_path) trainset = torchvision.datasets.CIFAR10( root=dataset_path, train=True, download=download, transform=transform_train) trainloader = torch.utils.data.DataLoader( trainset, batch_size=batch_size, shuffle=True, num_workers=num_workers) testset = torchvision.datasets.CIFAR10( root=dataset_path, train=False, download=download, transform=transform_test) testloader = torch.utils.data.DataLoader( testset, batch_size=100, shuffle=False, num_workers=num_workers) return trainloader, testloader