import sys import os sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))) from utils.dataset_utils import get_cifar10_dataloaders from utils.train_utils import train_model, train_model_data_augmentation, train_model_backdoor from utils.parse_args import parse_args from model import ShuffleNet def main(): # 解析命令行参数 args = parse_args() # 创建模型 model = ShuffleNet() if args.train_type == '0': # 获取数据加载器 trainloader, testloader = get_cifar10_dataloaders(batch_size=args.batch_size) # 训练模型 train_model( model=model, trainloader=trainloader, testloader=testloader, epochs=args.epochs, lr=args.lr, device=f'cuda:{args.gpu}', save_dir='../model', model_name='shufflenet', save_type='0' ) elif args.train_type == '1': train_model_data_augmentation( model, epochs=args.epochs, lr=args.lr, device=f'cuda:{args.gpu}', save_dir='../model', model_name='shufflenet', batch_size=args.batch_size, num_workers=args.num_workers ) elif args.train_type == '2': train_model_backdoor( model, poison_ratio=args.poison_ratio, target_label=args.target_label, epochs=args.epochs, lr=args.lr, device=f'cuda:{args.gpu}', save_dir='../model', model_name='shufflenet', batch_size=args.batch_size, num_workers=args.num_workers ) if __name__ == '__main__': main()