''' GoogLeNet in PyTorch. Paper: "Going Deeper with Convolutions" Reference: https://arxiv.org/abs/1409.4842 主要特点: 1. 使用Inception模块,通过多尺度卷积提取特征 2. 采用1x1卷积降维,减少计算量 3. 使用全局平均池化代替全连接层 4. 引入辅助分类器帮助训练(本实现未包含) ''' import torch import torch.nn as nn class Inception(nn.Module): '''Inception模块 Args: in_planes: 输入通道数 n1x1: 1x1卷积分支的输出通道数 n3x3red: 3x3卷积分支的降维通道数 n3x3: 3x3卷积分支的输出通道数 n5x5red: 5x5卷积分支的降维通道数 n5x5: 5x5卷积分支的输出通道数 pool_planes: 池化分支的输出通道数 ''' def __init__(self, in_planes, n1x1, n3x3red, n3x3, n5x5red, n5x5, pool_planes): super(Inception, self).__init__() # 1x1卷积分支 self.branch1 = nn.Sequential( nn.Conv2d(in_planes, n1x1, kernel_size=1), nn.BatchNorm2d(n1x1), nn.ReLU(True), ) # 1x1 -> 3x3卷积分支 self.branch2 = nn.Sequential( nn.Conv2d(in_planes, n3x3red, kernel_size=1), nn.BatchNorm2d(n3x3red), nn.ReLU(True), nn.Conv2d(n3x3red, n3x3, kernel_size=3, padding=1), nn.BatchNorm2d(n3x3), nn.ReLU(True), ) # 1x1 -> 5x5卷积分支(用两个3x3代替) self.branch3 = nn.Sequential( nn.Conv2d(in_planes, n5x5red, kernel_size=1), nn.BatchNorm2d(n5x5red), nn.ReLU(True), nn.Conv2d(n5x5red, n5x5, kernel_size=3, padding=1), nn.BatchNorm2d(n5x5), nn.ReLU(True), nn.Conv2d(n5x5, n5x5, kernel_size=3, padding=1), nn.BatchNorm2d(n5x5), nn.ReLU(True), ) # 3x3池化 -> 1x1卷积分支 self.branch4 = nn.Sequential( nn.MaxPool2d(3, stride=1, padding=1), nn.Conv2d(in_planes, pool_planes, kernel_size=1), nn.BatchNorm2d(pool_planes), nn.ReLU(True), ) def forward(self, x): '''前向传播,将四个分支的输出在通道维度上拼接''' b1 = self.branch1(x) b2 = self.branch2(x) b3 = self.branch3(x) b4 = self.branch4(x) return torch.cat([b1, b2, b3, b4], 1) class GoogLeNet(nn.Module): '''GoogLeNet/Inception v1网络 特点: 1. 使用Inception模块构建深层网络 2. 通过1x1卷积降维减少计算量 3. 使用全局平均池化代替全连接层减少参数量 ''' def __init__(self, num_classes=10): super(GoogLeNet, self).__init__() # 第一阶段:标准卷积层 self.pre_layers = nn.Sequential( nn.Conv2d(3, 192, kernel_size=3, padding=1), nn.BatchNorm2d(192), nn.ReLU(True), ) # 第二阶段:2个Inception模块 self.a3 = Inception(192, 64, 96, 128, 16, 32, 32) # 输出通道:256 self.b3 = Inception(256, 128, 128, 192, 32, 96, 64) # 输出通道:480 # 最大池化层 self.maxpool = nn.MaxPool2d(3, stride=2, padding=1) # 第三阶段:5个Inception模块 self.a4 = Inception(480, 192, 96, 208, 16, 48, 64) # 输出通道:512 self.b4 = Inception(512, 160, 112, 224, 24, 64, 64) # 输出通道:512 self.c4 = Inception(512, 128, 128, 256, 24, 64, 64) # 输出通道:512 self.d4 = Inception(512, 112, 144, 288, 32, 64, 64) # 输出通道:528 self.e4 = Inception(528, 256, 160, 320, 32, 128, 128) # 输出通道:832 # 第四阶段:2个Inception模块 self.a5 = Inception(832, 256, 160, 320, 32, 128, 128) # 输出通道:832 self.b5 = Inception(832, 384, 192, 384, 48, 128, 128) # 输出通道:1024 # 全局平均池化和分类器 self.avgpool = nn.AvgPool2d(8, stride=1) self.linear = nn.Linear(1024, num_classes) def forward(self, x): # 第一阶段 out = self.pre_layers(x) # 第二阶段 out = self.a3(out) out = self.b3(out) out = self.maxpool(out) # 第三阶段 out = self.a4(out) out = self.b4(out) out = self.c4(out) out = self.d4(out) out = self.e4(out) out = self.maxpool(out) # 第四阶段 out = self.a5(out) out = self.b5(out) # 分类器 out = self.avgpool(out) out = out.view(out.size(0), -1) out = self.linear(out) return out def test(): """测试函数""" net = GoogLeNet() x = torch.randn(1, 3, 32, 32) y = net(x) print(y.size()) # 打印模型结构 from torchinfo import summary device = 'cuda' if torch.cuda.is_available() else 'cpu' net = net.to(device) summary(net, (1, 3, 32, 32)) if __name__ == '__main__': test()