# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. from __future__ import absolute_import, division, print_function import argparse import glob import logging import os import pickle import random import re import gc import shutil import json import numpy as np import torch from torch.utils.data import DataLoader, Dataset, SequentialSampler, RandomSampler,TensorDataset from torch.utils.data.distributed import DistributedSampler try: from torch.utils.tensorboard import SummaryWriter except: from tensorboardX import SummaryWriter from transformers import (WEIGHTS_NAME, AdamW, get_linear_schedule_with_warmup, BertConfig, BertForMaskedLM, BertTokenizer, GPT2Config, GPT2LMHeadModel, GPT2Tokenizer, OpenAIGPTConfig, OpenAIGPTLMHeadModel, OpenAIGPTTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer) class concodeDataset(Dataset): def __init__(self, tokenizer, args, logger, file_type='train', block_size=512, mode='train'): if args.local_rank==-1: local_rank=0 world_size=1 else: local_rank=args.local_rank world_size=torch.distributed.get_world_size() self.block_size = block_size self.mode = mode if not os.path.exists(args.output_dir): os.makedirs(args.output_dir) cached_file = os.path.join(args.output_dir, file_type+"_blocksize_%d"%(block_size)+"_wordsize_%d"%(world_size)+"_rank_%d"%(local_rank)) if mode != 'test' and os.path.exists(cached_file) and not args.overwrite_cache: if file_type == 'train': logger.warning("Loading features from cached file %s", cached_file) with open(cached_file, 'rb') as handle: data = pickle.load(handle) self.inputs = data['inputs'] self.token_labels = data['token_labels'] else: self.inputs = [] self.token_labels = [] datafile = os.path.join(args.data_dir, f"{file_type}.json") if file_type == 'train': logger.warning("Creating features from dataset file at %s", datafile) datas = open(datafile).readlines() length = len(datas) logger.info("Data size: %d"%(length)) for idx, x in enumerate(datas): if idx % (length//10) == 0: percent = idx / (length//10) * 10 logger.warning("Rank %d, load %d"%(local_rank, percent)) if idx % world_size != local_rank: continue x = json.loads(x) code = tokenizer.encode(x["code"]) nl = tokenizer.encode(x["nl"]) input_ids, input_labels = self.pad_and_get_mask(code, nl, tokenizer) self.inputs.append(input_ids) self.token_labels.append(input_labels) if file_type == 'train': logger.warning("Rank %d Training %d token, %d samples"%(local_rank, length, len(self.inputs))) logger.warning("Saving features into cached file %s", cached_file) if mode != 'test': with open(cached_file, 'wb') as handle: pickle.dump({'inputs': self.inputs, 'token_labels': self.token_labels}, handle, protocol=pickle.HIGHEST_PROTOCOL) def pad_and_get_mask(self, code, nl, tokenizer): if self.mode == 'test': code = [] while (len(code) + len(nl) + 2 > self.block_size): if (len(code) > len(nl)): code = code[:-1] else: nl = nl[:-1] if self.mode == 'train': inputs = nl + [tokenizer.bos_token_id] + code + [tokenizer.eos_token_id] labels = [1] * len(nl) + [2] * (len(code)+1) + [0] else: inputs = nl + [tokenizer.bos_token_id] labels = [1] * len(nl) + [2] return inputs, labels assert len(inputs) <= self.block_size pad_len = self.block_size - len(inputs) inputs += [tokenizer.pad_token_id] * pad_len labels += [0] * pad_len assert len(inputs) == len(labels) return inputs, labels def __len__(self): return len(self.inputs) def __getitem__(self, item): return torch.tensor(self.inputs[item]), torch.tensor(self.token_labels[item])