File size: 7,537 Bytes
b9a85cf 53a7080 e74c701 53a7080 b5661e6 53a7080 b9a85cf 53a7080 bb53f69 f16b533 cb76e1b bb53f69 f16b533 bb53f69 a6bb55a bb53f69 c4d537e bb53f69 c4d537e bb53f69 a6bb55a bb53f69 c4d537e bb53f69 a6bb55a bb53f69 289cb3e bb53f69 c4d537e bb53f69 a6bb55a bb53f69 f16b533 bb53f69 ae0e8ad a6bb55a ae0e8ad f16b533 bb53f69 a6bb55a f16b533 af403e5 352bfbc a6bb55a 352bfbc af403e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
---
annotations_creators: []
language_creators:
- crowdsourced
- expert-generated
language:
- code
license:
- other
multilinguality:
- multilingual
pretty_name: github-code
size_categories:
- unknown
source_datasets: []
task_categories:
- text-generation
task_ids:
- language-modeling
---
# GitHub Code Dataset
## Dataset Description
The GitHub Code dataset consists of 115M code files from GitHub in 32 programming languages with 60 extensions totaling in 1TB of data. The dataset was created from the public GitHub dataset on Google BiqQuery.
### How to use it
The GitHub Code dataset is a very large dataset so for most use cases it is recommended to make use of the streaming API of `datasets`. You can load and iterate through the dataset with the following two lines of code:
```python
from datasets import load_dataset
ds = load_dataset("codeparrot/github-code", streaming=True, split="train")
print(next(iter(ds)))
#OUTPUT:
{
'code': "import mod189 from './mod189';\nvar value=mod189+1;\nexport default value;\n",
'repo_name': 'MirekSz/webpack-es6-ts',
'path': 'app/mods/mod190.js',
'language': 'JavaScript',
'license': 'isc',
'size': 73
}
```
You can see that besides the code, repo name, and path also the programming language, license, and the size of the file are part of the dataset. You can also filter the dataset for any subset of the 30 included languages (see the full list below) in the dataset. Just pass the list of languages as a list. E.g. if your dream is to build a Codex model for Dockerfiles use the following configuration:
```python
ds = load_dataset("codeparrot/github-code", streaming=True, split="train", languages=["Dockerfile"])
print(next(iter(ds))["code"])
#OUTPUT:
"""\
FROM rockyluke/ubuntu:precise
ENV DEBIAN_FRONTEND="noninteractive" \
TZ="Europe/Amsterdam"
...
"""
```
We also have access to the license of the origin repo of a file so we can filter for licenses in the same way we filtered for languages:
```python
ds = load_dataset("codeparrot/github-code", streaming=True, split="train", licenses=["mit", "isc"])
licenses = []
for element in iter(ds).take(10_000):
licenses.append(element["license"])
print(Counter(licenses))
#OUTPUT:
Counter({'mit': 9896, 'isc': 104})
```
Naturally, you can also download the full dataset. Note that this will download ~300GB compressed text data and the uncompressed dataset will take up ~1TB of storage:
```python
ds = load_dataset("codeparrot/github-code", split="train")
```
## Data Structure
### Data Instances
```python
{
'code': "import mod189 from './mod189';\nvar value=mod189+1;\nexport default value;\n",
'repo_name': 'MirekSz/webpack-es6-ts',
'path': 'app/mods/mod190.js',
'language': 'JavaScript',
'license': 'isc',
'size': 73
}
```
### Data Fields
|Field|Type|Description|
|---|---|---|
|code|string|content of source file|
|repo_name|string|name of the GitHub repository|
|path|string|path of file in GitHub repository|
|language|string|programming language as inferred by extension|
|license|string|license of GitHub repository|
|size|int|size of source file in bytes|
### Data Splits
The dataset only contains a train split.
## Languages
The dataset contains 30 programming languages with over 60 extensions:
```python
{
"Assembly": [".asm"],
"Batchfile": [".bat", ".cmd"],
"C": [".c", ".h"],
"C#": [".cs"],
"C++": [".cpp", ".hpp", ".c++", ".h++", ".cc", ".hh", ".C", ".H"],
"CMake": [".cmake"],
"CSS": [".css"],
"Dockerfile": [".dockerfile", "Dockerfile"],
"FORTRAN": ['.f90', '.f', '.f03', '.f08', '.f77', '.f95', '.for', '.fpp'],
"GO": [".go"],
"Haskell": [".hs"],
"HTML":[".html"],
"Java": [".java"],
"JavaScript": [".js"],
"Julia": [".jl"],
"Lua": [".lua"],
"Makefile": ["Makefile"],
"Markdown": [".md", ".markdown"],
"PHP": [".php", ".php3", ".php4", ".php5", ".phps", ".phpt"],
"Perl": [".pl", ".pm", ".pod", ".perl"],
"PowerShell": ['.ps1', '.psd1', '.psm1'],
"Python": [".py"],
"Ruby": [".rb"],
"Rust": [".rs"],
"SQL": [".sql"],
"Scala": [".scala"],
"Shell": [".sh", ".bash", ".command", ".zsh"],
"TypeScript": [".ts", ".tsx"],
"TeX": [".tex"],
"Visual Basic": [".vb"]
}
```
## Licenses
Each example is also annotated with the license of the associated repository. There are in total 15 licenses:
```python
[
'mit',
'apache-2.0',
'gpl-3.0',
'gpl-2.0',
'bsd-3-clause',
'agpl-3.0',
'lgpl-3.0',
'lgpl-2.1',
'bsd-2-clause',
'cc0-1.0',
'epl-1.0',
'mpl-2.0',
'unlicense',
'isc',
'artistic-2.0'
]
```
## Dataset Statistics
The dataset contains 115M files and the sum of all the source code file sizes is 873 GB (note that the size of the dataset is larger due to the extra fields). A breakdown per language is given in the plot and table below:
![dataset-statistics](https://huggingface.co/datasets/codeparrot/github-code/resolve/main/github-code-stats-alpha.png)
| | Language |File Count| Size (GB)|
|---:|:-------------|---------:|-------:|
| 0 | Java | 19548190 | 107.70 |
| 1 | C | 14143113 | 183.83 |
| 2 | JavaScript | 11839883 | 87.82 |
| 3 | HTML | 11178557 | 118.12 |
| 4 | PHP | 11177610 | 61.41 |
| 5 | Markdown | 8464626 | 23.09 |
| 6 | C++ | 7380520 | 87.73 |
| 7 | Python | 7226626 | 52.03 |
| 8 | C# | 6811652 | 36.83 |
| 9 | Ruby | 4473331 | 10.95 |
| 10 | GO | 2265436 | 19.28 |
| 11 | TypeScript | 1940406 | 24.59 |
| 12 | CSS | 1734406 | 22.67 |
| 13 | Shell | 1385648 | 3.01 |
| 14 | Scala | 835755 | 3.87 |
| 15 | Makefile | 679430 | 2.92 |
| 16 | SQL | 656671 | 5.67 |
| 17 | Lua | 578554 | 2.81 |
| 18 | Perl | 497949 | 4.70 |
| 19 | Dockerfile | 366505 | 0.71 |
| 20 | Haskell | 340623 | 1.85 |
| 21 | Rust | 322431 | 2.68 |
| 22 | TeX | 251015 | 2.15 |
| 23 | Batchfile | 236945 | 0.70 |
| 24 | CMake | 175282 | 0.54 |
| 25 | Visual Basic | 155652 | 1.91 |
| 26 | FORTRAN | 142038 | 1.62 |
| 27 | PowerShell | 136846 | 0.69 |
| 28 | Assembly | 82905 | 0.78 |
| 29 | Julia | 58317 | 0.29 |
## Dataset Creation
The dataset was created in two steps:
1. Files of with the extensions given in the list above were retrieved from the GitHub dataset on BigQuery (full query [here](https://huggingface.co/datasets/codeparrot/github-code/blob/main/query.sql)). The query was executed on _Mar 16, 2022, 6:23:39 PM UTC+1_.
2. Files with lines longer than 1000 characters and duplicates (exact duplicates ignoring whitespaces) were dropped (full preprocessing script [here](https://huggingface.co/datasets/codeparrot/github-code/blob/main/github_preprocessing.py)).
## Considerations for Using the Data
The dataset consists of source code from a wide range of repositories. As such they can potentially include harmful or biased code as well as sensitive information like passwords or usernames.
## Releases
You can load any older version of the dataset with the `revision` argument:
```Python
ds = load_dataset("codeparrot/github-code", revision="v1.0")
```
### v1.0
- Initial release of dataset
- The query was executed on _Feb 14, 2022, 12:03:16 PM UTC+1_
### v1.1
- Fix missing Scala/TypeScript
- Fix deduplication issue with inconsistent Python `hash`
- The query was executed on _Mar 16, 2022, 6:23:39 PM UTC+1_
|