# coding=utf-8 # Lint as: python3 """OffensEval-TR 2020: A Corpus of Turkish Offensive Language on Social Media""" from __future__ import absolute_import, division, print_function import csv import logging import os import datasets _CITATION = """\ @InProceedings{coltekin2020lrec, author = {Cagri Coltekin}, year = {2020}, title = {A Corpus of Turkish Offensive Language on Social Media}, booktitle = {Proceedings of The 12th Language Resources and Evaluation Conference}, pages = {6174--6184}, address = {Marseille, France}, url = {https://www.aclweb.org/anthology/2020.lrec-1.758}, } """ _DESCRIPTION = """\ OffensEval-TR 2020 is a Turkish offensive language corpus. The corpus consist of randomly sampled tweets and annotated in a similar way to OffensEval and GermEval. """ _HOMEPAGE = "https://coltekin.github.io/offensive-turkish/" _DOWNLOAD_URL = "https://coltekin.github.io/offensive-turkish/offenseval2020-turkish.zip" _FOLDER_NAME = "offenseval-tr-{split}-v1" class OffensEval2020TRConfig(datasets.BuilderConfig): """BuilderConfig for OffensEval2020TR.""" def __init__(self, **kwargs): """BuilderConfig for OffensEval2020TR. Args: **kwargs: keyword arguments forwarded to super. """ super(OffensEval2020TRConfig, self).__init__(**kwargs) class Offenseval2020TR(datasets.GeneratorBasedBuilder): """OffensEval-TR 2020: A Corpus of Turkish Offensive Language on Social Media""" BUILDER_CONFIGS = [ OffensEval2020TRConfig( name="offenseval2020-turkish", version=datasets.Version("1.0.0"), description="OffensEval-TR 2020: A Corpus of Turkish Offensive Language on Social Media", ), ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "id": datasets.Value("int32"), "tweet": datasets.Value("string"), "subtask_a": datasets.features.ClassLabel(names=["NOT", "OFF"]), } ), supervised_keys=None, homepage=_HOMEPAGE, citation=_CITATION, ) def _split_generators(self, dl_manager): dl_dir = dl_manager.download_and_extract(_DOWNLOAD_URL) data_dir = os.path.join(dl_dir, self.config.name) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepath": os.path.join( data_dir, _FOLDER_NAME.format(split="training"), "offenseval-tr-training-v1.tsv" ), "labelpath": None, }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "filepath": os.path.join( data_dir, _FOLDER_NAME.format(split="testset"), "offenseval-tr-testset-v1.tsv" ), "labelpath": os.path.join( data_dir, _FOLDER_NAME.format(split="testset"), "offenseval-tr-labela-v1.tsv" ), }, ), ] def _generate_examples(self, filepath, labelpath): """Generate OffensEval2020TR examples.""" logging.info("⏳ Generating examples from = %s", filepath) if labelpath: with open(filepath, encoding="utf-8") as f: with open(labelpath, encoding="utf-8") as f2: reader_testset = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE) reader_label = csv.DictReader( f2, delimiter=",", quoting=csv.QUOTE_NONE, fieldnames=["id", "subtask_a"] ) list_label = list(reader_label) for idx, row in enumerate(reader_testset): row_label = list_label[idx] yield idx, {"id": row["id"], "tweet": row["tweet"], "subtask_a": row_label["subtask_a"]} else: with open(filepath, encoding="utf-8") as f: reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE) for idx, row in enumerate(reader): yield idx, {"id": row["id"], "tweet": row["tweet"], "subtask_a": row["subtask_a"]}