|
import datasets |
|
import os |
|
import numpy as np |
|
|
|
SHARD_SIZE = 2500 |
|
NUM_SHARDS = 40 |
|
_DATA_FILES = [ |
|
f'data_{i*SHARD_SIZE}_to_{(i+1)*SHARD_SIZE}.zip' for i in range(NUM_SHARDS) |
|
] + [ 'val.zip' ] |
|
|
|
_DESCRIPTION = """\ |
|
TODO |
|
""" |
|
|
|
class CommaVQ(datasets.GeneratorBasedBuilder): |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{"path": datasets.Value("string")} |
|
) |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
dl_manager.download_config.ignore_url_params = True |
|
downloaded_files = dl_manager.download(_DATA_FILES) |
|
local_extracted_archive = dl_manager.extract(downloaded_files) if not dl_manager.is_streaming else [None]*len(downloaded_files) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=str(i), |
|
gen_kwargs={"local_extracted_archive":local_extracted_archive[i], "files": dl_manager.iter_archive(downloaded_files[i])} |
|
) for i in range(len(downloaded_files))] |
|
|
|
def _generate_examples(self, local_extracted_archive, files): |
|
for path_in_archive, f in files: |
|
path = os.path.join(local_extracted_archive, path_in_archive) if local_extracted_archive is not None else path_in_archive |
|
yield path_in_archive, {'path': path} |