Datasets:

Modalities:
Tabular
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 13,978 Bytes
d7dc860
 
 
 
 
541686f
d7dc860
541686f
99ab91f
d7dc860
 
 
 
 
 
 
2bf9c7b
 
c634930
1fd9307
c7638a7
 
7599948
a98b82a
7599948
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a98b82a
7599948
e5f56e3
a98b82a
e5f56e3
a98b82a
 
 
 
 
 
 
 
 
 
d7dc860
 
 
 
 
 
 
c634930
d7dc860
 
 
c634930
 
d7dc860
 
 
 
 
 
 
 
 
 
 
 
 
bbe0696
d7dc860
 
 
 
 
495d620
d7dc860
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbe0696
 
 
7599948
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
---
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
language:
- en
license:
- cc-by-4.0
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- extended|other-ROC-stories
task_categories:
- fill-mask
- text-generation
paperswithcode_id: glucose
pretty_name: GLUCOSE
tags:
- commonsense-inference
dataset_info:
  config_name: glucose
  features:
  - name: experiment_id
    dtype: string
  - name: story_id
    dtype: string
  - name: worker_id
    dtype: int64
  - name: worker_ids
    dtype: string
  - name: submission_time_normalized
    dtype: string
  - name: worker_quality_assessment
    dtype: int64
  - name: selected_sentence_index
    dtype: int64
  - name: story
    dtype: string
  - name: selected_sentence
    dtype: string
  - name: number_filled_in
    dtype: int64
  - name: 1_specificNL
    dtype: string
  - name: 1_specificStructured
    dtype: string
  - name: 1_generalNL
    dtype: string
  - name: 1_generalStructured
    dtype: string
  - name: 2_specificNL
    dtype: string
  - name: 2_specificStructured
    dtype: string
  - name: 2_generalNL
    dtype: string
  - name: 2_generalStructured
    dtype: string
  - name: 3_specificNL
    dtype: string
  - name: 3_specificStructured
    dtype: string
  - name: 3_generalNL
    dtype: string
  - name: 3_generalStructured
    dtype: string
  - name: 4_specificNL
    dtype: string
  - name: 4_specificStructured
    dtype: string
  - name: 4_generalNL
    dtype: string
  - name: 4_generalStructured
    dtype: string
  - name: 5_specificNL
    dtype: string
  - name: 5_specificStructured
    dtype: string
  - name: 5_generalNL
    dtype: string
  - name: 5_generalStructured
    dtype: string
  - name: 6_specificNL
    dtype: string
  - name: 6_specificStructured
    dtype: string
  - name: 6_generalNL
    dtype: string
  - name: 6_generalStructured
    dtype: string
  - name: 7_specificNL
    dtype: string
  - name: 7_specificStructured
    dtype: string
  - name: 7_generalNL
    dtype: string
  - name: 7_generalStructured
    dtype: string
  - name: 8_specificNL
    dtype: string
  - name: 8_specificStructured
    dtype: string
  - name: 8_generalNL
    dtype: string
  - name: 8_generalStructured
    dtype: string
  - name: 9_specificNL
    dtype: string
  - name: 9_specificStructured
    dtype: string
  - name: 9_generalNL
    dtype: string
  - name: 9_generalStructured
    dtype: string
  - name: 10_specificNL
    dtype: string
  - name: 10_specificStructured
    dtype: string
  - name: 10_generalNL
    dtype: string
  - name: 10_generalStructured
    dtype: string
  splits:
  - name: train
    num_bytes: 204604082
    num_examples: 65522
  - name: test
    num_bytes: 355573
    num_examples: 500
  download_size: 78390868
  dataset_size: 204959655
configs:
- config_name: glucose
  data_files:
  - split: train
    path: glucose/train-*
  - split: test
    path: glucose/test-*
  default: true
---

# Dataset Card for [Dataset Name]

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **[Repository](https://github.com/TevenLeScao/glucose)**
- **[Paper](https://arxiv.org/abs/2009.07758)**
- **Point of Contact:** [glucose@elementalcognition.com](mailto:glucose@elementalcognition.com)

### Dataset Summary

GLUCOSE: GeneraLized and COntextualized Story Explanations, is a novel conceptual framework and dataset for commonsense reasoning. Given a short story and a sentence X in the story, GLUCOSE captures ten dimensions of causal explanation related to X. These dimensions, inspired by human cognitive psychology, cover often-implicit causes and effects of X, including events, location, possession, and other attributes.

### Supported Tasks and Leaderboards

Common sense inference of:
1. Causes
2. Emotions motivating an event
3. Locations enabling an event
4. Possession states enabling an event
5. Other attributes enabling an event
6. Consequences
7. Emotions caused by an event
8. Changes in location caused by an event
9. Changes in possession caused by an event
10. Other attributes that may be changed by an event

### Languages

English, monolingual

## Dataset Structure

### Data Instances

```
{
  "experiment_id": "e56c7c3e-4660-40fb-80d0-052d566d676a__4",
  "story_id": "e56c7c3e-4660-40fb-80d0-052d566d676a",
  "worker_id": 19,
  "submission_time_normalized": "20190930",
  "worker_quality_rating": 3,
  "selected_sentence_index": 4,
  "story": "It was bedtime at our house. Two of the three kids hit the pillow and fall asleep. The third is a trouble maker. For two hours he continues to get out of bed and want to play. Finally he becomes tired and falls asleep."
  selected_sentence: "Finally he becomes tired and falls asleep.",
  "1_specificNL": "The third kid continues to  get out of bed and wants to play >Causes/Enables> The kid finally becomes tired and falls asleep",
  "1_specificStructured": "{The third kid}_[subject] {continues}_[verb] {to }_[preposition1] {get out of bed}_[object1] {and wants to play}_[object2] >Causes/Enables> {The kid}_[subject] {finally becomes}_[verb] {tired}_[object1] {and falls asleep}_[object2]",
  "1_generalNL": "Someone_A doesn't want to  go to sleep >Causes/Enables> Someone_A finally falls asleep",
  "1_generalStructured": "{Someone_A}_[subject] {doesn't want}_[verb] {to }_[preposition1] {go to sleep}_[object1] >Causes/Enables> {Someone_A}_[subject] {finally falls}_[verb] {asleep}_[object1]",
  "2_specificNL": "escaped",
  "2_specificStructured": "escaped",
  "2_generalNL": "escaped",
  "2_generalStructured": "escaped",
  "3_specificNL": "The third kid is in bed >Enables> The kid finally becomes tired and falls asleep",
  "3_specificStructured": "{The third kid}_[subject] {is}_[verb] {in}_[preposition] {bed}_[object] >Enables> {The kid}_[subject] {finally becomes}_[verb] {tired}_[object1] {and falls asleep}_[object2]",
  "3_generalNL": "Someone_A is in bed >Enables> Someone_A falls asleep",
  "3_generalStructured": "{Someone_A}_[subject] {is}_[verb] {in}_[preposition] {bed}_[object] >Enables> {Someone_A}_[subject] {falls}_[verb] {asleep}_[object1]",
  "4_specificNL": "escaped",
  "4_specificStructured": "escaped",
  "4_generalNL": "escaped",
  "4_generalStructured": "escaped",
  "5_specificNL": "escaped",
  "5_specificStructured": "escaped",
  "5_generalNL": "escaped",
  "5_generalStructured": "escaped",
  "6_specificNL": "escaped",
  "6_specificStructured": "escaped",
  "6_generalNL": "escaped",
  "6_generalStructured": "escaped",
  "7_specificNL": "escaped",
  "7_specificStructured": "escaped",
  "7_generalNL": "escaped",
  "7_generalStructured": "escaped",
  "8_specificNL": "escaped",
  "8_specificStructured": "escaped",
  "8_generalNL": "escaped",
  "8_generalStructured": "escaped",
  "9_specificNL": "escaped",
  "9_specificStructured": "escaped",
  "9_generalNL": "escaped",
  "9_generalStructured": "escaped",
  "10_specificNL": "escaped",
  "10_specificStructured": "escaped",
  "10_generalNL": "escaped",
  "10_generalStructured": "escaped",
  "number_filled_in": 7
}
```

### Data Fields

- __experiment_id__: a randomly generated alphanumeric sequence for a given story with the sentence index appended at the end after two underscores. Example: cbee2b5a-f2f9-4bca-9630-6825b1e36c13__0

- __story_id__: a random alphanumeric identifier for the story. Example: e56c7c3e-4660-40fb-80d0-052d566d676a

- __worker_id__: each worker has a unique identificaiton number. Example: 21

- __submission_time_normalized__: the time of submission in the format YYYYMMDD. Example: 20200115

- __worker_quality_assessment__: rating for the worker on the assignment in the row. Example: 2

- __selected_sentence_index__: the index of a given sentence in a story. Example: 0

- __story__: contains the full text of the ROC story that was used for the HIT. Example: It was bedtime at our house. Two of the three kids hit the pillow and fall asleep. The third is a trouble maker. For two hours he continues to get out of bed and want to play. Finally he becomes tired and falls asleep.

- __selected_sentence__: the sentence from the story that is being annotated. Example: It was bedtime at our house.

- __[1-10]\_[specific/general][NL/Structured]__: This is the primary data collected. It provides the common sense knowledge about the related stories and those general rules about the world derived from the specific statements. For each of the ten relationships, there are four columns. The specific columns give the specific statements from the story. The general statements give the corresponding generalization. The NL columns are formatted in natural language, whereas the structured columns contain indications of the slots used to fill in the data. Example: 
  - __1_specificNL__: "The school has a football team >Causes/Enables> The football game was last weekend" 
  - __1_specificStructured__: "{The school }\_[subject] {has }\_[verb] {a football team }\_[object1] >Causes/Enables> {The football game }\_[subject] {was last weekend }\_[verb]"
  - __1_generalNL__: "Somewhere_A (that is a school ) has Something_A (that is a sports team ) >Causes/Enables> The game was last weekend" 
  - __1_generalStructured__: "{Somewhere_A ||that is a school ||}\_[subject] {has }\_[verb] {Something_A ||that is a sports team ||}\_[object1] >Causes/Enables> {The game }\_[subject] {was last weekend }\_[verb]" 

- __number\_filled\_in__: number of dimensions filled in for the assignment. Example: 4


### Data Splits

Train split: 65,521 examples
Test splits: 500 examples, without worker id and rating, number filled in, and structured text.

## Dataset Creation

### Curation Rationale

When humans read or listen, they make implicit commonsense inferences that frame their understanding of what happened and why. As a step toward AI systems that can build similar mental models, we introduce GLUCOSE, a large-scale dataset of implicit commonsense causal knowledge, encoded as causal mini-theories about the world, each grounded in a narrative context.

### Source Data

#### Initial Data Collection and Normalization

Initial text from ROCStories

#### Who are the source language producers?

Amazon Mechanical Turk.

### Annotations

#### Annotation process

To enable developing models that can build mental models of narratives, we aimed to crowdsource a large, quality-monitored dataset. Beyond the scalability benefits, using crowd workers (as opposed to a small set of expert annotators) ensures diversity of thought, thus broadening coverage of a common-sense knowledge resource. The annotation task is complex: it requires annotators to understand different causal dimensions in a variety of contexts and to come up with generalized  theories beyond  the  story  context.   For
strict quality control,  we designed a three-stage knowledge  acquisition  pipeline  for  crowdsourcing the GLUCOSE dataset on the Amazon Mechanical Turk Platform. The workers first go through a qualification test where they must score at least 90% on 10 multiple-choice questions on select GLUCOSE dimensions. Next, qualified workers can work on the main GLUCOSE data collection task:  given a story S and a story sentence X, they are asked to fill in (allowing for non-applicable) all ten GLUCOSE dimensions, getting step-by-step guidance from the GLUCOSE data acquisition. To ensure data consistency,  the same workers answer all dimensions for an S, X pair. Finally, the submissions are reviewed by an expert who rates each worker on a scale from 0 to 3, and provides feedback on how to improve. Our final UIs are the result of more than six rounds of pilot studies, iteratively improving the interaction elements, functionality, dimension definitions, instructions, and examples.

#### Who are the annotators?

Amazon Mechanical Turk workers, with feedback from an expert.

### Personal and Sensitive Information

No personal or sensitive information.

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

Nasrin Mostafazadeh, Aditya Kalyanpur, Lori Moon, David Buchanan, Lauren Berkowitz, Or Biran, Jennifer Chu-Carroll, from Elemental Cognition

### Licensing Information

Creative Commons Attribution-NonCommercial 4.0 International Public License

### Citation Information

```
@inproceedings{mostafazadeh2020glucose,
      title={GLUCOSE: GeneraLized and COntextualized Story Explanations}, 
      author={Nasrin Mostafazadeh and Aditya Kalyanpur and Lori Moon and David Buchanan and Lauren Berkowitz and Or Biran and Jennifer Chu-Carroll},
      year={2020},
      booktitle={The Conference on Empirical Methods in Natural Language Processing},
      publisher={Association for Computational Linguistics}
}
```
### Contributions

Thanks to [@TevenLeScao](https://github.com/TevenLeScao) for adding this dataset.