Datasets:

Modalities:
Tabular
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 6,693 Bytes
d7dc860
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
122cc3a
d7dc860
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""GLUCOSE: GeneraLized and COntextualized Story Explanations, is a novel conceptual framework and dataset for commonsense reasoning. Given a short story and a sentence X in the story, GLUCOSE captures ten dimensions of causal explanation related to X. These dimensions, inspired by human cognitive psychology, cover often-implicit causes and effects of X, including events, location, possession, and other attributes."""


import csv
import os

import datasets


# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@inproceedings{mostafazadeh2020glucose,
      title={GLUCOSE: GeneraLized and COntextualized Story Explanations},
      author={Nasrin Mostafazadeh and Aditya Kalyanpur and Lori Moon and David Buchanan and Lauren Berkowitz and Or Biran and Jennifer Chu-Carroll},
      year={2020},
      booktitle={The Conference on Empirical Methods in Natural Language Processing},
      publisher={Association for Computational Linguistics}
}
"""

# You can copy an official description
_DESCRIPTION = """\
When humans read or listen, they make implicit commonsense inferences that frame their understanding of what happened and why. As a step toward AI systems that can build similar mental models, we introduce GLUCOSE, a large-scale dataset of implicit commonsense causal knowledge, encoded as causal mini-theories about the world, each grounded in a narrative context.
"""

_HOMEPAGE = "https://github.com/ElementalCognition/glucose"

_LICENSE = "Creative Commons Attribution-NonCommercial 4.0 International Public License"

_URLs = {
    "glucose": {
        "test": "https://raw.githubusercontent.com/ElementalCognition/glucose/master/test/test_set_no_answers.csv",
        "train": "https://github.com/TevenLeScao/glucose/blob/master/GLUCOSE_training_data.zip?raw=true",
    }
}


class Glucose(datasets.GeneratorBasedBuilder):
    """GLUCOSE: GeneraLized and COntextualized Story Explanations, is a novel conceptual framework and dataset for commonsense reasoning."""

    VERSION = datasets.Version("1.1.0")
    BUILDER_CONFIGS = [
        datasets.BuilderConfig(name="glucose", description="Main dataset"),
    ]

    def _info(self):
        feature_dict = {
            "experiment_id": datasets.Value("string"),
            "story_id": datasets.Value("string"),
            # The train set contains only one ID in numeric form
            "worker_id": datasets.Value("int64"),
            # The test set contains several IDs in string form
            "worker_ids": datasets.Value("string"),
            "submission_time_normalized": datasets.Value("string"),
            "worker_quality_assessment": datasets.Value("int64"),
            "selected_sentence_index": datasets.Value("int64"),
            "story": datasets.Value("string"),
            "selected_sentence": datasets.Value("string"),
            "number_filled_in": datasets.Value("int64"),
        }
        for i in range(1, 11):
            feature_dict[f"{i}_specificNL"] = datasets.Value("string")
            feature_dict[f"{i}_specificStructured"] = datasets.Value("string")
            feature_dict[f"{i}_generalNL"] = datasets.Value("string")
            feature_dict[f"{i}_generalStructured"] = datasets.Value("string")
        features = datasets.Features(feature_dict)
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            supervised_keys=None,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        train_url = _URLs[self.config.name]["train"]
        test_url = _URLs[self.config.name]["test"]
        train_data = dl_manager.download_and_extract(train_url)
        test_data = dl_manager.download_and_extract(test_url)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepath": os.path.join(train_data, "GLUCOSE_training_data_final.csv"),
                    "split": "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={"filepath": test_data, "split": "test"},
            ),
        ]

    def _generate_examples(self, filepath, split):
        with open(filepath, encoding="utf8") as f:
            data = csv.reader(f)
            next(data)
            for id_, row in enumerate(data):
                if split == "train":
                    yield id_, train_dict_from_row(row)
                else:
                    yield id_, test_dict_from_row(row)


def train_dict_from_row(row):
    return_dict = {
        "experiment_id": row[0],
        "story_id": row[1],
        "worker_id": row[2],
        "worker_ids": "",
        "submission_time_normalized": row[3],
        "worker_quality_assessment": row[4],
        "selected_sentence_index": row[5],
        "story": row[6],
        "selected_sentence": row[7],
        "number_filled_in": row[48],
    }
    for i in range(1, 11):
        return_dict[f"{i}_specificNL"] = row[4 * i + 4]
        return_dict[f"{i}_specificStructured"] = row[4 * i + 5]
        return_dict[f"{i}_generalNL"] = row[4 * i + 6]
        return_dict[f"{i}_generalStructured"] = row[4 * i + 7]
    return return_dict


def test_dict_from_row(row):
    return_dict = {
        "experiment_id": "",
        "story_id": row[0],
        "worker_id": -1,
        "worker_ids": row[3],
        "submission_time_normalized": "",
        "worker_quality_assessment": -1,
        "selected_sentence_index": -1,
        "story": row[1],
        "selected_sentence": row[2],
        "number_filled_in": -1,
    }
    for i in range(1, 11):
        return_dict[f"{i}_specificNL"] = row[2 * i + 2]
        return_dict[f"{i}_generalNL"] = row[2 * i + 3]
        return_dict[f"{i}_specificStructured"] = ""
        return_dict[f"{i}_generalStructured"] = ""
    return return_dict