Datasets:

Modalities:
Tabular
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
system HF staff commited on
Commit
2b00a83
1 Parent(s): bbe0696

Update files from the datasets library (from 1.6.0)

Browse files

Release notes: https://github.com/huggingface/datasets/releases/tag/1.6.0

Files changed (2) hide show
  1. dataset_infos.json +1 -0
  2. glucose.py +0 -1
dataset_infos.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"glucose": {"description": "When humans read or listen, they make implicit commonsense inferences that frame their understanding of what happened and why. As a step toward AI systems that can build similar mental models, we introduce GLUCOSE, a large-scale dataset of implicit commonsense causal knowledge, encoded as causal mini-theories about the world, each grounded in a narrative context.\n", "citation": "@inproceedings{mostafazadeh2020glucose,\n title={GLUCOSE: GeneraLized and COntextualized Story Explanations},\n author={Nasrin Mostafazadeh and Aditya Kalyanpur and Lori Moon and David Buchanan and Lauren Berkowitz and Or Biran and Jennifer Chu-Carroll},\n year={2020},\n booktitle={The Conference on Empirical Methods in Natural Language Processing},\n publisher={Association for Computational Linguistics}\n}\n", "homepage": "https://github.com/ElementalCognition/glucose", "license": "Creative Commons Attribution-NonCommercial 4.0 International Public License", "features": {"experiment_id": {"dtype": "string", "id": null, "_type": "Value"}, "story_id": {"dtype": "string", "id": null, "_type": "Value"}, "worker_id": {"dtype": "int64", "id": null, "_type": "Value"}, "worker_ids": {"dtype": "string", "id": null, "_type": "Value"}, "submission_time_normalized": {"dtype": "string", "id": null, "_type": "Value"}, "worker_quality_assessment": {"dtype": "int64", "id": null, "_type": "Value"}, "selected_sentence_index": {"dtype": "int64", "id": null, "_type": "Value"}, "story": {"dtype": "string", "id": null, "_type": "Value"}, "selected_sentence": {"dtype": "string", "id": null, "_type": "Value"}, "number_filled_in": {"dtype": "int64", "id": null, "_type": "Value"}, "1_specificNL": {"dtype": "string", "id": null, "_type": "Value"}, "1_specificStructured": {"dtype": "string", "id": null, "_type": "Value"}, "1_generalNL": {"dtype": "string", "id": null, "_type": "Value"}, "1_generalStructured": {"dtype": "string", "id": null, "_type": "Value"}, "2_specificNL": {"dtype": "string", "id": null, "_type": "Value"}, "2_specificStructured": {"dtype": "string", "id": null, "_type": "Value"}, "2_generalNL": {"dtype": "string", "id": null, "_type": "Value"}, "2_generalStructured": {"dtype": "string", "id": null, "_type": "Value"}, "3_specificNL": {"dtype": "string", "id": null, "_type": "Value"}, "3_specificStructured": {"dtype": "string", "id": null, "_type": "Value"}, "3_generalNL": {"dtype": "string", "id": null, "_type": "Value"}, "3_generalStructured": {"dtype": "string", "id": null, "_type": "Value"}, "4_specificNL": {"dtype": "string", "id": null, "_type": "Value"}, "4_specificStructured": {"dtype": "string", "id": null, "_type": "Value"}, "4_generalNL": {"dtype": "string", "id": null, "_type": "Value"}, "4_generalStructured": {"dtype": "string", "id": null, "_type": "Value"}, "5_specificNL": {"dtype": "string", "id": null, "_type": "Value"}, "5_specificStructured": {"dtype": "string", "id": null, "_type": "Value"}, "5_generalNL": {"dtype": "string", "id": null, "_type": "Value"}, "5_generalStructured": {"dtype": "string", "id": null, "_type": "Value"}, "6_specificNL": {"dtype": "string", "id": null, "_type": "Value"}, "6_specificStructured": {"dtype": "string", "id": null, "_type": "Value"}, "6_generalNL": {"dtype": "string", "id": null, "_type": "Value"}, "6_generalStructured": {"dtype": "string", "id": null, "_type": "Value"}, "7_specificNL": {"dtype": "string", "id": null, "_type": "Value"}, "7_specificStructured": {"dtype": "string", "id": null, "_type": "Value"}, "7_generalNL": {"dtype": "string", "id": null, "_type": "Value"}, "7_generalStructured": {"dtype": "string", "id": null, "_type": "Value"}, "8_specificNL": {"dtype": "string", "id": null, "_type": "Value"}, "8_specificStructured": {"dtype": "string", "id": null, "_type": "Value"}, "8_generalNL": {"dtype": "string", "id": null, "_type": "Value"}, "8_generalStructured": {"dtype": "string", "id": null, "_type": "Value"}, "9_specificNL": {"dtype": "string", "id": null, "_type": "Value"}, "9_specificStructured": {"dtype": "string", "id": null, "_type": "Value"}, "9_generalNL": {"dtype": "string", "id": null, "_type": "Value"}, "9_generalStructured": {"dtype": "string", "id": null, "_type": "Value"}, "10_specificNL": {"dtype": "string", "id": null, "_type": "Value"}, "10_specificStructured": {"dtype": "string", "id": null, "_type": "Value"}, "10_generalNL": {"dtype": "string", "id": null, "_type": "Value"}, "10_generalStructured": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "glucose", "config_name": "glucose", "version": "0.0.0", "splits": {"train": {"name": "train", "num_bytes": 204605370, "num_examples": 65522, "dataset_name": "glucose"}, "test": {"name": "test", "num_bytes": 355757, "num_examples": 500, "dataset_name": "glucose"}}, "download_checksums": {"https://github.com/TevenLeScao/glucose/blob/master/GLUCOSE_training_data.zip?raw=true": {"num_bytes": 30101885, "checksum": "4951a837660ae1b4e72510e381c3533bc1d8b30b9f529467112982f0cca90771"}, "https://raw.githubusercontent.com/ElementalCognition/glucose/master/test/test_set_no_answers.csv": {"num_bytes": 260220, "checksum": "d2dd4ff76816ba2858aceea217dbc40adc9d9f522cfd811f3493ed0edf65c3ba"}}, "download_size": 30362105, "post_processing_size": null, "dataset_size": 204961127, "size_in_bytes": 235323232}}
glucose.py CHANGED
@@ -14,7 +14,6 @@
14
  # limitations under the License.
15
  """GLUCOSE: GeneraLized and COntextualized Story Explanations, is a novel conceptual framework and dataset for commonsense reasoning. Given a short story and a sentence X in the story, GLUCOSE captures ten dimensions of causal explanation related to X. These dimensions, inspired by human cognitive psychology, cover often-implicit causes and effects of X, including events, location, possession, and other attributes."""
16
 
17
- from __future__ import absolute_import, division, print_function
18
 
19
  import csv
20
  import os
 
14
  # limitations under the License.
15
  """GLUCOSE: GeneraLized and COntextualized Story Explanations, is a novel conceptual framework and dataset for commonsense reasoning. Given a short story and a sentence X in the story, GLUCOSE captures ten dimensions of causal explanation related to X. These dimensions, inspired by human cognitive psychology, cover often-implicit causes and effects of X, including events, location, possession, and other attributes."""
16
 
 
17
 
18
  import csv
19
  import os