File size: 9,056 Bytes
b19f21f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""roman_urdu_hate_speech dataset"""


import csv

import datasets
from datasets.tasks import TextClassification


# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@inproceedings{rizwan2020hate,
  title={Hate-speech and offensive language detection in roman Urdu},
  author={Rizwan, Hammad and Shakeel, Muhammad Haroon and Karim, Asim},
  booktitle={Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)},
  pages={2512--2522},
  year={2020}
}
"""

# You can copy an official description
_DESCRIPTION = """\
 The Roman Urdu Hate-Speech and Offensive Language Detection (RUHSOLD) dataset is a \
 Roman Urdu dataset of tweets annotated by experts in the relevant language. \
 The authors develop the gold-standard for two sub-tasks. \
 First sub-task is based on binary labels of Hate-Offensive content and Normal content (i.e., inoffensive language). \
 These labels are self-explanatory. \
 The authors refer to this sub-task as coarse-grained classification. \
 Second sub-task defines Hate-Offensive content with \
 four labels at a granular level. \
 These labels are the most relevant for the demographic of users who converse in RU and \
 are defined in related literature. The authors refer to this sub-task as fine-grained classification. \
 The objective behind creating two gold-standards is to enable the researchers to evaluate the hate speech detection \
 approaches on both easier (coarse-grained) and challenging (fine-grained) scenarios. \
"""

_HOMEPAGE = "https://github.com/haroonshakeel/roman_urdu_hate_speech"

_LICENSE = "MIT License"

_Download_URL = "https://raw.githubusercontent.com/haroonshakeel/roman_urdu_hate_speech/main/"

# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URLS = {
    "Coarse_Grained_train": _Download_URL + "task_1_train.tsv",
    "Coarse_Grained_validation": _Download_URL + "task_1_validation.tsv",
    "Coarse_Grained_test": _Download_URL + "task_1_test.tsv",
    "Fine_Grained_train": _Download_URL + "task_2_train.tsv",
    "Fine_Grained_validation": _Download_URL + "task_2_validation.tsv",
    "Fine_Grained_test": _Download_URL + "task_2_test.tsv",
}


class RomanUrduHateSpeechConfig(datasets.BuilderConfig):
    """BuilderConfig for RomanUrduHateSpeech Config"""

    def __init__(self, **kwargs):
        """BuilderConfig for RomanUrduHateSpeech Config.
        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        super(RomanUrduHateSpeechConfig, self).__init__(**kwargs)


class RomanUrduHateSpeech(datasets.GeneratorBasedBuilder):
    """Roman Urdu Hate Speech dataset"""

    VERSION = datasets.Version("1.1.0")

    # This is an example of a dataset with multiple configurations.
    # If you don't want/need to define several sub-sets in your dataset,
    # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.

    # If you need to make complex sub-parts in the datasets with configurable options
    # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
    # BUILDER_CONFIG_CLASS = MyBuilderConfig

    # You will be able to load one or the other configurations in the following list with
    # data = datasets.load_dataset('my_dataset', 'first_domain')
    # data = datasets.load_dataset('my_dataset', 'second_domain')
    BUILDER_CONFIGS = [
        RomanUrduHateSpeechConfig(
            name="Coarse_Grained",
            version=VERSION,
            description="This part of my dataset covers the Coarse Grained dataset",
        ),
        RomanUrduHateSpeechConfig(
            name="Fine_Grained", version=VERSION, description="This part of my dataset covers the Fine Grained dataset"
        ),
    ]

    DEFAULT_CONFIG_NAME = "Coarse_Grained"
    # It's not mandatory to have a default configuration. Just use one if it makes sense.

    def _info(self):

        if self.config.name == "Coarse_Grained":
            features = datasets.Features(
                {
                    "tweet": datasets.Value("string"),
                    "label": datasets.features.ClassLabel(names=["Abusive/Offensive", "Normal"]),
                    # These are the features of your dataset like images, labels ...
                }
            )
        if self.config.name == "Fine_Grained":
            features = datasets.Features(
                {
                    "tweet": datasets.Value("string"),
                    "label": datasets.features.ClassLabel(
                        names=["Abusive/Offensive", "Normal", "Religious Hate", "Sexism", "Profane/Untargeted"]
                    ),
                    # These are the features of your dataset like images, labels ...
                }
            )
        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # This defines the different columns of the dataset and their types
            features=features,  # Here we define them above because they are different between the two configurations
            # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
            # specify them. They'll be used if as_supervised=True in builder.as_dataset.
            # supervised_keys=("sentence", "label"),
            # Homepage of the dataset for documentation
            homepage=_HOMEPAGE,
            # License for the dataset if available
            license=_LICENSE,
            # Citation for the dataset
            citation=_CITATION,
            task_templates=[TextClassification(text_column="tweet", label_column="label")],
        )

    def _split_generators(self, dl_manager):

        urls_train = _URLS[self.config.name + "_train"]

        urls_validate = _URLS[self.config.name + "_validation"]

        urls_test = _URLS[self.config.name + "_test"]

        data_dir_train = dl_manager.download_and_extract(urls_train)

        data_dir_validate = dl_manager.download_and_extract(urls_validate)

        data_dir_test = dl_manager.download_and_extract(urls_test)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": data_dir_train,
                    "split": "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": data_dir_test,
                    "split": "test",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": data_dir_validate,
                    "split": "dev",
                },
            ),
        ]

    # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
    def _generate_examples(self, filepath, split):

        # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
        with open(filepath, encoding="utf-8") as tsv_file:
            tsv_reader = csv.reader(tsv_file, quotechar="|", delimiter="\t", quoting=csv.QUOTE_ALL)
            for key, row in enumerate(tsv_reader):
                if key == 0:
                    continue
                if self.config.name == "Coarse_Grained":
                    tweet, label = row
                    label = int(label)
                    yield key, {
                        "tweet": tweet,
                        "label": None if split == "test" else label,
                    }
                if self.config.name == "Fine_Grained":
                    tweet, label = row
                    label = int(label)
                    yield key, {
                        "tweet": tweet,
                        "label": None if split == "test" else label,
                    }
                # Yields examples as (key, example) tuples