Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
multi-class-classification
Languages:
Urdu
Size:
10K - 100K
Tags:
binary classification
License:
File size: 9,056 Bytes
b19f21f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""roman_urdu_hate_speech dataset"""
import csv
import datasets
from datasets.tasks import TextClassification
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@inproceedings{rizwan2020hate,
title={Hate-speech and offensive language detection in roman Urdu},
author={Rizwan, Hammad and Shakeel, Muhammad Haroon and Karim, Asim},
booktitle={Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)},
pages={2512--2522},
year={2020}
}
"""
# You can copy an official description
_DESCRIPTION = """\
The Roman Urdu Hate-Speech and Offensive Language Detection (RUHSOLD) dataset is a \
Roman Urdu dataset of tweets annotated by experts in the relevant language. \
The authors develop the gold-standard for two sub-tasks. \
First sub-task is based on binary labels of Hate-Offensive content and Normal content (i.e., inoffensive language). \
These labels are self-explanatory. \
The authors refer to this sub-task as coarse-grained classification. \
Second sub-task defines Hate-Offensive content with \
four labels at a granular level. \
These labels are the most relevant for the demographic of users who converse in RU and \
are defined in related literature. The authors refer to this sub-task as fine-grained classification. \
The objective behind creating two gold-standards is to enable the researchers to evaluate the hate speech detection \
approaches on both easier (coarse-grained) and challenging (fine-grained) scenarios. \
"""
_HOMEPAGE = "https://github.com/haroonshakeel/roman_urdu_hate_speech"
_LICENSE = "MIT License"
_Download_URL = "https://raw.githubusercontent.com/haroonshakeel/roman_urdu_hate_speech/main/"
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URLS = {
"Coarse_Grained_train": _Download_URL + "task_1_train.tsv",
"Coarse_Grained_validation": _Download_URL + "task_1_validation.tsv",
"Coarse_Grained_test": _Download_URL + "task_1_test.tsv",
"Fine_Grained_train": _Download_URL + "task_2_train.tsv",
"Fine_Grained_validation": _Download_URL + "task_2_validation.tsv",
"Fine_Grained_test": _Download_URL + "task_2_test.tsv",
}
class RomanUrduHateSpeechConfig(datasets.BuilderConfig):
"""BuilderConfig for RomanUrduHateSpeech Config"""
def __init__(self, **kwargs):
"""BuilderConfig for RomanUrduHateSpeech Config.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(RomanUrduHateSpeechConfig, self).__init__(**kwargs)
class RomanUrduHateSpeech(datasets.GeneratorBasedBuilder):
"""Roman Urdu Hate Speech dataset"""
VERSION = datasets.Version("1.1.0")
# This is an example of a dataset with multiple configurations.
# If you don't want/need to define several sub-sets in your dataset,
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
# If you need to make complex sub-parts in the datasets with configurable options
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
# BUILDER_CONFIG_CLASS = MyBuilderConfig
# You will be able to load one or the other configurations in the following list with
# data = datasets.load_dataset('my_dataset', 'first_domain')
# data = datasets.load_dataset('my_dataset', 'second_domain')
BUILDER_CONFIGS = [
RomanUrduHateSpeechConfig(
name="Coarse_Grained",
version=VERSION,
description="This part of my dataset covers the Coarse Grained dataset",
),
RomanUrduHateSpeechConfig(
name="Fine_Grained", version=VERSION, description="This part of my dataset covers the Fine Grained dataset"
),
]
DEFAULT_CONFIG_NAME = "Coarse_Grained"
# It's not mandatory to have a default configuration. Just use one if it makes sense.
def _info(self):
if self.config.name == "Coarse_Grained":
features = datasets.Features(
{
"tweet": datasets.Value("string"),
"label": datasets.features.ClassLabel(names=["Abusive/Offensive", "Normal"]),
# These are the features of your dataset like images, labels ...
}
)
if self.config.name == "Fine_Grained":
features = datasets.Features(
{
"tweet": datasets.Value("string"),
"label": datasets.features.ClassLabel(
names=["Abusive/Offensive", "Normal", "Religious Hate", "Sexism", "Profane/Untargeted"]
),
# These are the features of your dataset like images, labels ...
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
# supervised_keys=("sentence", "label"),
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
task_templates=[TextClassification(text_column="tweet", label_column="label")],
)
def _split_generators(self, dl_manager):
urls_train = _URLS[self.config.name + "_train"]
urls_validate = _URLS[self.config.name + "_validation"]
urls_test = _URLS[self.config.name + "_test"]
data_dir_train = dl_manager.download_and_extract(urls_train)
data_dir_validate = dl_manager.download_and_extract(urls_validate)
data_dir_test = dl_manager.download_and_extract(urls_test)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": data_dir_train,
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": data_dir_test,
"split": "test",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": data_dir_validate,
"split": "dev",
},
),
]
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, filepath, split):
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
with open(filepath, encoding="utf-8") as tsv_file:
tsv_reader = csv.reader(tsv_file, quotechar="|", delimiter="\t", quoting=csv.QUOTE_ALL)
for key, row in enumerate(tsv_reader):
if key == 0:
continue
if self.config.name == "Coarse_Grained":
tweet, label = row
label = int(label)
yield key, {
"tweet": tweet,
"label": None if split == "test" else label,
}
if self.config.name == "Fine_Grained":
tweet, label = row
label = int(label)
yield key, {
"tweet": tweet,
"label": None if split == "test" else label,
}
# Yields examples as (key, example) tuples
|