File size: 6,451 Bytes
1dff0e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b95b2b
 
96e7316
1dff0e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PAUQ: Text-to-SQL in Russian"""


import json
import os

import datasets


logger = datasets.logging.get_logger(__name__)


_CITATION = """\
@inproceedings{bakshandaeva-etal-2022-pauq,
    title = "{PAUQ}: Text-to-{SQL} in {R}ussian",
    author = "Bakshandaeva, Daria  and
      Somov, Oleg  and
      Dmitrieva, Ekaterina  and
      Davydova, Vera  and
      Tutubalina, Elena",
    booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2022",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, United Arab Emirates",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2022.findings-emnlp.175",
"""

_DESCRIPTION = """\
    Pauq is a first Russian text-to-SQL dataset translated from original Spider dataset 
    with corrections and refinements of question, queries and databases.
"""

_LICENSE = "CC BY-SA 4.0"

_HOMEPAGE = "https://github.com/ai-spiderweb/pauq"

_URL = "https://huggingface.co/datasets/composite/pauq/resolve/main/formatted_pauq.zip"


class Pauq(datasets.GeneratorBasedBuilder):
    VERSION = datasets.Version("1.0.0")

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name="ru_pauq_tl",
            version=VERSION,
            description=_DESCRIPTION,
        ),
        datasets.BuilderConfig(
            name="en_pauq_tl",
            version=VERSION,
            description=_DESCRIPTION,
        ),
        datasets.BuilderConfig(
            name="ru_pauq_iid",
            version=VERSION,
            description=_DESCRIPTION,
        ),
        datasets.BuilderConfig(
            name="en_pauq_iid",
            version=VERSION,
            description=_DESCRIPTION,
        ),
    ]

    def _info(self):
        features = datasets.Features(
            {
                "id": datasets.Value("string"),
                "db_id": datasets.Value("string"),
                "source": datasets.Value("string"),
                "type": datasets.Value("string"),
                "question": datasets.Value("string"),
                "query": datasets.Value("string"),
                "sql": datasets.features.Sequence(datasets.Value("string")),
                "question_toks": datasets.features.Sequence(datasets.Value("string")),
                "query_toks": datasets.features.Sequence(datasets.Value("string")),
                "query_toks_no_value": datasets.features.Sequence(datasets.Value("string")),
                "masked_query": datasets.Value("string")
            }
        )
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            supervised_keys=None,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        downloaded_filepath = dl_manager.download_and_extract(_URL)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "data_filepath": os.path.join(downloaded_filepath, "splits/ru_iid_train.json"),
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "data_filepath": os.path.join(downloaded_filepath, "splits/ru_iid_test.json"),
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "data_filepath": os.path.join(downloaded_filepath, "splits/ru_tl_train.json"),
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "data_filepath": os.path.join(downloaded_filepath, "splits/ru_tl_est.json"),
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "data_filepath": os.path.join(downloaded_filepath, "splits/en_iid_train.json"),
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "data_filepath": os.path.join(downloaded_filepath, "splits/en_iid_test.json"),
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "data_filepath": os.path.join(downloaded_filepath, "splits/en_tl_train.json"),
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "data_filepath": os.path.join(downloaded_filepath, "splits/en_tl_test.json"),
                },
            ),
        ]

    def _generate_examples(self, data_filepath):
        """This function returns the examples in the raw (text) form."""
        logger.info("generating examples from = %s", data_filepath)
        with open(data_filepath, encoding="utf-8") as f:
            pauq = json.load(f)
            for idx, sample in enumerate(pauq):
                yield idx, {
                    "id": sample["id"],
                    "db_id": sample["db_id"],
                    "source": sample["source"],
                    "type": sample["type"],
                    "query": sample["query"],
                    "sql": datasets.Value("string"),
                    "question": sample["question"],
                    "question_toks": sample["question_toks"],
                    "query_toks": sample["query_toks"],
                    "query_toks_no_value": sample["query_toks_no_value"],
                    "masked_query": sample["masked_query"]
                }