File size: 6,784 Bytes
e9bfdd3 c0240aa e9bfdd3 c0240aa e9bfdd3 873701a e9bfdd3 9012b42 1dff0e6 9012b42 1dff0e6 9012b42 1dff0e6 17d6e2b 1dff0e6 873701a 1dff0e6 873701a 1dff0e6 873701a 1dff0e6 873701a 1dff0e6 9012b42 1dff0e6 873701a 1dff0e6 873701a 1dff0e6 9012b42 873701a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
---
dataset_info:
- config_name: ru_pauq_tl
features:
- name: id
dtype: string
- name: db_id
dtype: string
- name: source
dtype: string
- name: type
dtype: string
- name: question
dtype: string
- name: query
dtype: string
- name: sql
sequence: string
- name: question_toks
sequence: string
- name: query_toks
sequence: string
- name: query_toks_no_values
sequence: string
- name: masked_query
dtype: string
splits:
- name: train
num_bytes: 8188471
num_examples: 6558
- name: test
num_bytes: 2284950
num_examples: 1979
download_size: 315047611
dataset_size: 10473421
- config_name: en_pauq_tl
features:
- name: id
dtype: string
- name: db_id
dtype: string
- name: source
dtype: string
- name: type
dtype: string
- name: question
dtype: string
- name: query
dtype: string
- name: sql
sequence: string
- name: question_toks
sequence: string
- name: query_toks
sequence: string
- name: query_toks_no_values
sequence: string
- name: masked_query
dtype: string
splits:
- name: train
num_bytes: 7433812
num_examples: 6559
- name: test
num_bytes: 2017972
num_examples: 1975
download_size: 315047611
dataset_size: 9451784
- config_name: ru_pauq_iid
features:
- name: id
dtype: string
- name: db_id
dtype: string
- name: source
dtype: string
- name: type
dtype: string
- name: question
dtype: string
- name: query
dtype: string
- name: sql
sequence: string
- name: question_toks
sequence: string
- name: query_toks
sequence: string
- name: query_toks_no_values
sequence: string
- name: masked_query
dtype: string
splits:
- name: train
num_bytes: 9423175
num_examples: 8800
- name: test
num_bytes: 1069135
num_examples: 1074
download_size: 315047611
dataset_size: 10492310
- config_name: en_pauq_iid
features:
- name: id
dtype: string
- name: db_id
dtype: string
- name: source
dtype: string
- name: type
dtype: string
- name: question
dtype: string
- name: query
dtype: string
- name: sql
sequence: string
- name: question_toks
sequence: string
- name: query_toks
sequence: string
- name: query_toks_no_values
sequence: string
- name: masked_query
dtype: string
splits:
- name: train
num_bytes: 8505951
num_examples: 8800
- name: test
num_bytes: 964008
num_examples: 1076
download_size: 315047611
dataset_size: 9469959
license: cc-by-4.0
task_categories:
- translation
- text2text-generation
language:
- ru
tags:
- text-to-sql
size_categories:
- 10K<n<100K
---
# Dataset Card for [Dataset Name]
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Languages](#languages)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Additional Information](#additional-information)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:**
- **Repository:**
- **Paper:**
- **Leaderboard:**
- **Point of Contact:**
Link to databases: https://drive.google.com/file/d/1Xjbp207zfCaBxhPgt-STB_RxwNo2TIW2/view
### Dataset Summary
The Russian version of the [Spider](https://yale-lily.github.io/spider) - Yale Semantic Parsing and Text-to-SQL Dataset.
Major changings:
- Adding (not replacing) new Russian language values in DB tables. Table and DB names remain the original.
- Localization of natural language questions into Russian. All DB values replaced by new.
- Changing in SQL-queries filters.
- Filling empty table with values.
- Complementing the dataset with the new samples of underrepresented types.
### Languages
Russian
## Dataset Creation
### Curation Rationale
The translation from English to Russian is undertaken by a professional human translator with SQL-competence. A verification of the translated questions and their conformity with the queries, and an updating of the databases are undertaken by 4 computer science students.
Details are in the [section 3](https://aclanthology.org/2022.findings-emnlp.175.pdf).
## Additional Information
### Licensing Information
The presented dataset have been collected in a manner which is consistent with the terms of use of the original Spider, which is distributed under the CC BY-SA 4.0 license.
### Citation Information
[Paper link](https://aclanthology.org/2022.findings-emnlp.175.pdf)
```
@inproceedings{bakshandaeva-etal-2022-pauq,
title = "{PAUQ}: Text-to-{SQL} in {R}ussian",
author = "Bakshandaeva, Daria and
Somov, Oleg and
Dmitrieva, Ekaterina and
Davydova, Vera and
Tutubalina, Elena",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2022",
month = dec,
year = "2022",
address = "Abu Dhabi, United Arab Emirates",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.findings-emnlp.175",
pages = "2355--2376",
abstract = "Semantic parsing is an important task that allows to democratize human-computer interaction. One of the most popular text-to-SQL datasets with complex and diverse natural language (NL) questions and SQL queries is Spider. We construct and complement a Spider dataset for Russian, thus creating the first publicly available text-to-SQL dataset for this language. While examining its components - NL questions, SQL queries and databases content - we identify limitations of the existing database structure, fill out missing values for tables and add new requests for underrepresented categories. We select thirty functional test sets with different features that can be used for the evaluation of neural models{'} abilities. To conduct the experiments, we adapt baseline architectures RAT-SQL and BRIDGE and provide in-depth query component analysis. On the target language, both models demonstrate strong results with monolingual training and improved accuracy in multilingual scenario. In this paper, we also study trade-offs between machine-translated and manually-created NL queries. At present, Russian text-to-SQL is lacking in datasets as well as trained models, and we view this work as an important step towards filling this gap.",
}
```
### Contributions
Thanks to [@gugutse](https://github.com/Gugutse), [@runnerup96](https://github.com/runnerup96), [@dmi3eva](https://github.com/dmi3eva), [@veradavydova](https://github.com/VeraDavydova), [@tutubalinaev](https://github.com/tutubalinaev) for adding this dataset. |