# coding=utf-8 """SEP-28K dataset.""" import os import gzip import shutil import urllib.request from typing import List from pathlib import Path import librosa import datasets import pandas as pd from rich import print from tqdm.auto import tqdm SAMPLING_RATE = 16_000 CLASSES = ['block', 'prolongation', 'sound_rep', 'word_rep', 'interjection', 'no_dysfluencies'] class SEP28KConfig(datasets.BuilderConfig): """BuilderConfig for SEP-28K.""" def __init__(self, features, **kwargs): super(SEP28KConfig, self).__init__(version=datasets.Version("0.0.1", ""), **kwargs) self.features = features class SEP28K(datasets.GeneratorBasedBuilder): BUILDER_CONFIGS = [ SEP28KConfig( features=datasets.Features( { "audio": datasets.Audio(sampling_rate=SAMPLING_RATE), # "speaker": datasets.Value("string"), # "duration": datasets.Value("int32"), "start": datasets.Value("int32"), "end": datasets.Value("int32"), "stutter": datasets.Sequence(datasets.Value("string")), "label": datasets.Sequence(datasets.features.ClassLabel(names=CLASSES)), } ), name="sep28k", description="", ), SEP28KConfig( features=datasets.Features( { "audio": datasets.Audio(sampling_rate=SAMPLING_RATE), # "speaker": datasets.Value("string"), # "duration": datasets.Value("int32"), "start": datasets.Value("int32"), "end": datasets.Value("int32"), "stutter": datasets.Sequence(datasets.Value("string")), "label": datasets.Sequence(datasets.features.ClassLabel(names=CLASSES)), } ), name="fluencybank", description="", ), ] DEFAULT_CONFIG_NAME = "sep28k" def __init__( self, cache_dir = None, dataset_name = None, config_name = None, hash = None, base_path = None, info = None, features = None, token = None, repo_id = None, data_files = None, data_dir = None, storage_options = None, writer_batch_size = None, **config_kwargs ): super().__init__( cache_dir, dataset_name, config_name, hash, base_path, info, features, token, repo_id, data_files, data_dir, storage_options, writer_batch_size, **config_kwargs ) def _info(self): return datasets.DatasetInfo( description="SEP-28K dataset", features=self.config.features, ) def _split_generators(self, dl_manager): if dl_manager.manual_dir is None: from datasets.config import HF_DATASETS_CACHE data_dir = os.path.join(HF_DATASETS_CACHE, "downloads") print(f'`data_dir` is None, set the path to {data_dir}') else: data_dir = os.path.abspath(os.path.expanduser(dl_manager.manual_dir)) if not os.path.exists(os.path.join(data_dir, 'clips')): download_file( 'https://huggingface.co/datasets/confit/sep-28k/resolve/main/archive.zip', dest=os.path.join(data_dir, 'archive.zip'), unpack=True, write_permissions=True ) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"data_dir": data_dir}), ] def _generate_examples(self, data_dir): """Generate examples from SEP-28K""" if self.config.name == 'sep28k': metadata_df = pd.read_csv(os.path.join(data_dir, 'SEP-28k_labels.csv')) elif self.config.name == 'fluencybank': metadata_df = pd.read_csv(os.path.join(data_dir, 'fluencybank_labels.csv')) metadata_df = metadata_df[metadata_df['Unsure'] == 0].reset_index(drop=True) print(metadata_df) threshold = 2 # https://arxiv.org/pdf/2102.12394 _mapping = {} for idx, row in metadata_df.iterrows(): filename = f"{row['Show']}_{row['EpId']}_{row['ClipId']}" start = row['Start'] end = row['Stop'] block = 1 if row['Block'] >= threshold else 0 prolongation = 1 if row['Prolongation'] >= threshold else 0 sound_rep = 1 if row['SoundRep'] >= threshold else 0 word_rep = 1 if row['WordRep'] >= threshold else 0 interjection = 1 if row['Interjection'] >= threshold else 0 # no_stuttered_words = 1 if row['NoStutteredWords'] >= 1 else 0 dysfluencies = sum([prolongation, block, sound_rep, word_rep, interjection]) no_dysfluencies = 1 if dysfluencies == 0 else 0 stutter = [] if block == 1: stutter.append('block') if prolongation == 1: stutter.append('prolongation') if sound_rep == 1: stutter.append('sound_rep') if word_rep == 1: stutter.append('word_rep') if interjection == 1: stutter.append('interjection') if no_dysfluencies == 1: stutter.append('no_dysfluencies') _mapping[filename] = { 'filename': filename, 'start': start, 'end': end, 'block': block, 'prolongation': prolongation, 'sound_rep': sound_rep, 'word_rep': word_rep, 'interjection': interjection, 'no_dysfluencies': no_dysfluencies, 'stutter': stutter, } # Iterating the contents of the data to extract the relevant information extensions = ['.wav'] _, wav_paths = fast_scandir(data_dir, extensions, recursive=True) for guid, wav_path in enumerate(wav_paths): # duration = librosa.get_duration(path=wav_path) # if duration <= 0: # continue try: fileid = Path(wav_path).stem info = _mapping[fileid] yield guid, { "id": str(guid), "audio": wav_path, "stutter": info['stutter'], "label": info['stutter'], "start": start, "end": end, } except: continue def fast_scandir(path: str, extensions: List[str], recursive: bool = False): # Scan files recursively faster than glob # From github.com/drscotthawley/aeiou/blob/main/aeiou/core.py subfolders, files = [], [] try: # hope to avoid 'permission denied' by this try for f in os.scandir(path): try: # 'hope to avoid too many levels of symbolic links' error if f.is_dir(): subfolders.append(f.path) elif f.is_file(): if os.path.splitext(f.name)[1].lower() in extensions: files.append(f.path) except Exception: pass except Exception: pass if recursive: for path in list(subfolders): sf, f = fast_scandir(path, extensions, recursive=recursive) subfolders.extend(sf) files.extend(f) # type: ignore return subfolders, files def download_file( source, dest, unpack=False, dest_unpack=None, replace_existing=False, write_permissions=False, ): """Downloads the file from the given source and saves it in the given destination path. Arguments --------- source : path or url Path of the source file. If the source is an URL, it downloads it from the web. dest : path Destination path. unpack : bool If True, it unpacks the data in the dest folder. dest_unpack: path Path where to store the unpacked dataset replace_existing : bool If True, replaces the existing files. write_permissions: bool When set to True, all the files in the dest_unpack directory will be granted write permissions. This option is active only when unpack=True. """ class DownloadProgressBar(tqdm): """DownloadProgressBar class.""" def update_to(self, b=1, bsize=1, tsize=None): """Needed to support multigpu training.""" if tsize is not None: self.total = tsize self.update(b * bsize - self.n) # Create the destination directory if it doesn't exist dest_dir = Path(dest).resolve().parent dest_dir.mkdir(parents=True, exist_ok=True) if "http" not in source: shutil.copyfile(source, dest) elif not os.path.isfile(dest) or ( os.path.isfile(dest) and replace_existing ): print(f"Downloading {source} to {dest}") with DownloadProgressBar( unit="B", unit_scale=True, miniters=1, desc=source.split("/")[-1], ) as t: urllib.request.urlretrieve( source, filename=dest, reporthook=t.update_to ) else: print(f"{dest} exists. Skipping download") # Unpack if necessary if unpack: if dest_unpack is None: dest_unpack = os.path.dirname(dest) print(f"Extracting {dest} to {dest_unpack}") # shutil unpack_archive does not work with tar.gz files if ( source.endswith(".tar.gz") or source.endswith(".tgz") or source.endswith(".gz") ): out = dest.replace(".gz", "") with gzip.open(dest, "rb") as f_in: with open(out, "wb") as f_out: shutil.copyfileobj(f_in, f_out) else: shutil.unpack_archive(dest, dest_unpack) if write_permissions: set_writing_permissions(dest_unpack) def set_writing_permissions(folder_path): """ This function sets user writing permissions to all the files in the given folder. Arguments --------- folder_path : folder Folder whose files will be granted write permissions. """ for root, dirs, files in os.walk(folder_path): for file_name in files: file_path = os.path.join(root, file_name) # Set writing permissions (mode 0o666) to the file os.chmod(file_path, 0o666)