|
import json |
|
import random |
|
|
|
import pandas as pd |
|
|
|
|
|
def parse_review(line): |
|
d = json.loads(line) |
|
d.pop("review_id") |
|
d.pop("user_id") |
|
d.pop("business_id") |
|
d["stars"] = int(d["stars"]) - 1 |
|
|
|
return d |
|
|
|
|
|
def remap2polarity(row): |
|
if row["stars"] in [0, 1]: |
|
row["stars"] = 0 |
|
elif row["stars"] in [3, 4]: |
|
row["stars"] = 1 |
|
else: |
|
raise ValueError("Invalid value") |
|
|
|
return row |
|
|
|
|
|
def run(): |
|
rows = [] |
|
|
|
with open( |
|
"yelp_dataset/yelp_academic_dataset_review.json", "r", encoding="utf8" |
|
) as file: |
|
lines = file.readlines() |
|
|
|
for line in lines: |
|
obj = parse_review(line) |
|
rows.append(obj) |
|
|
|
df = pd.DataFrame(rows) |
|
df.to_parquet("reviews.parquet") |
|
|
|
|
|
polarity_rows = [remap2polarity(row) for row in rows if row["stars"] != 2] |
|
|
|
positive = [row for row in polarity_rows if row["stars"] == 1] |
|
negative = [row for row in polarity_rows if row["stars"] == 0] |
|
min_size = min(len(positive), len(negative)) |
|
|
|
polarity_rows = positive[:min_size] + negative[:min_size] |
|
random.shuffle(polarity_rows) |
|
|
|
df = pd.DataFrame(polarity_rows) |
|
df.to_parquet("reviews_polarity.parquet") |
|
|
|
|
|
if __name__ == "__main__": |
|
run() |
|
|