Upload davis_pdp_raw.py with huggingface_hub
Browse files- davis_pdp_raw.py +131 -0
davis_pdp_raw.py
ADDED
|
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2020 The HuggingFace Datasets Authors.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
"""The Winograd Schema Challenge Dataset"""
|
| 16 |
+
|
| 17 |
+
import xml.etree.ElementTree as ET
|
| 18 |
+
|
| 19 |
+
import datasets
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
_DESCRIPTION = """\
|
| 23 |
+
A Winograd schema is a pair of sentences that differ in only one or two words and that contain an ambiguity that is
|
| 24 |
+
resolved in opposite ways in the two sentences and requires the use of world knowledge and reasoning for its
|
| 25 |
+
resolution. The schema takes its name from a well-known example by Terry Winograd:
|
| 26 |
+
|
| 27 |
+
> The city councilmen refused the demonstrators a permit because they [feared/advocated] violence.
|
| 28 |
+
|
| 29 |
+
If the word is ``feared'', then ``they'' presumably refers to the city council; if it is ``advocated'' then ``they''
|
| 30 |
+
presumably refers to the demonstrators.
|
| 31 |
+
"""
|
| 32 |
+
|
| 33 |
+
_CITATION = """\
|
| 34 |
+
@inproceedings{levesque2012winograd,
|
| 35 |
+
title={The winograd schema challenge},
|
| 36 |
+
author={Levesque, Hector and Davis, Ernest and Morgenstern, Leora},
|
| 37 |
+
booktitle={Thirteenth International Conference on the Principles of Knowledge Representation and Reasoning},
|
| 38 |
+
year={2012},
|
| 39 |
+
organization={Citeseer}
|
| 40 |
+
}
|
| 41 |
+
"""
|
| 42 |
+
|
| 43 |
+
_HOMPAGE = "https://cs.nyu.edu/faculty/davise/papers/WinogradSchemas/WS.html"
|
| 44 |
+
_DOWNLOAD_URL = "https://cs.nyu.edu/~davise/papers/WinogradSchemas/PDPChallenge2016.xml"
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
class WinogradWSCConfig(datasets.BuilderConfig):
|
| 48 |
+
"""BuilderConfig for WinogradWSC."""
|
| 49 |
+
|
| 50 |
+
def __init__(self, *args, language=None, inds=None, **kwargs):
|
| 51 |
+
super().__init__(*args, **kwargs)
|
| 52 |
+
self.inds = set(inds) if inds is not None else None
|
| 53 |
+
|
| 54 |
+
def is_in_range(self, id):
|
| 55 |
+
"""Takes an index and tells you if it belongs to the configuration's subset"""
|
| 56 |
+
return id in self.inds if self.inds is not None else True
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
class WinogradWSC(datasets.GeneratorBasedBuilder):
|
| 60 |
+
"""The Winograd Schema Challenge Dataset"""
|
| 61 |
+
|
| 62 |
+
BUILDER_CONFIG_CLASS = WinogradWSCConfig
|
| 63 |
+
BUILDER_CONFIGS = [
|
| 64 |
+
WinogradWSCConfig(
|
| 65 |
+
name="davis_pdp",
|
| 66 |
+
description="Full set of winograd examples",
|
| 67 |
+
),
|
| 68 |
+
]
|
| 69 |
+
|
| 70 |
+
def _info(self):
|
| 71 |
+
return datasets.DatasetInfo(
|
| 72 |
+
description=_DESCRIPTION,
|
| 73 |
+
features=datasets.Features(
|
| 74 |
+
{
|
| 75 |
+
"text": datasets.Value("string"),
|
| 76 |
+
"pronoun": datasets.Value("string"),
|
| 77 |
+
"pronoun_loc": datasets.Value("int32"),
|
| 78 |
+
"quote": datasets.Value("string"),
|
| 79 |
+
"quote_loc": datasets.Value("int32"),
|
| 80 |
+
"options": datasets.Sequence(datasets.Value("string")),
|
| 81 |
+
"label": datasets.Value("int32"),
|
| 82 |
+
"humanSubjects": datasets.Value("string"),
|
| 83 |
+
"source": datasets.Value("string"),
|
| 84 |
+
}
|
| 85 |
+
),
|
| 86 |
+
homepage=_HOMPAGE,
|
| 87 |
+
citation=_CITATION,
|
| 88 |
+
)
|
| 89 |
+
|
| 90 |
+
def _split_generators(self, dl_manager):
|
| 91 |
+
path = dl_manager.download_and_extract(_DOWNLOAD_URL)
|
| 92 |
+
return [
|
| 93 |
+
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": path}),
|
| 94 |
+
]
|
| 95 |
+
|
| 96 |
+
def _cleanup_whitespace(self, text):
|
| 97 |
+
return " ".join(text.split())
|
| 98 |
+
|
| 99 |
+
def _generate_examples(self, filepath):
|
| 100 |
+
tree = ET.parse(filepath)
|
| 101 |
+
for id, schema in enumerate(tree.getroot()):
|
| 102 |
+
if not self.config.is_in_range(id):
|
| 103 |
+
continue
|
| 104 |
+
|
| 105 |
+
text_root = schema.find("text")
|
| 106 |
+
quote_root = schema.find("quote")
|
| 107 |
+
|
| 108 |
+
text_left = self._cleanup_whitespace(text_root.findtext("txt1", ""))
|
| 109 |
+
text_right = self._cleanup_whitespace(text_root.findtext("txt2", ""))
|
| 110 |
+
quote_left = self._cleanup_whitespace(quote_root.findtext("quote1", ""))
|
| 111 |
+
quote_right = self._cleanup_whitespace(quote_root.findtext("quote2", ""))
|
| 112 |
+
pronoun = self._cleanup_whitespace(text_root.findtext("pron"))
|
| 113 |
+
|
| 114 |
+
features = {}
|
| 115 |
+
features["text"] = " ".join([text_left, pronoun, text_right]).strip()
|
| 116 |
+
features["quote"] = " ".join([quote_left, pronoun, quote_right]).strip()
|
| 117 |
+
|
| 118 |
+
features["pronoun"] = pronoun
|
| 119 |
+
features["options"] = [
|
| 120 |
+
self._cleanup_whitespace(option.text) for option in schema.find("answers").findall("answer")
|
| 121 |
+
]
|
| 122 |
+
|
| 123 |
+
answer_txt = self._cleanup_whitespace(schema.findtext("correctAnswer"))
|
| 124 |
+
features["label"] = 0 if "A" in answer_txt else (1 if "B" in answer_txt else (2 if "C" in answer_txt else 3)) # convert " A. " or " B " strings to a 0/1 index
|
| 125 |
+
|
| 126 |
+
features["pronoun_loc"] = len(text_left) + 1 if len(text_left) > 0 else 0
|
| 127 |
+
features["quote_loc"] = features["pronoun_loc"] - (len(quote_left) + 1 if len(quote_left) > 0 else 0)
|
| 128 |
+
features["humanSubjects"] = self._cleanup_whitespace(schema.findtext("humanSubjects"))
|
| 129 |
+
features["source"] = self._cleanup_whitespace(schema.findtext("source"))
|
| 130 |
+
|
| 131 |
+
yield id, features
|