Upload results for model microsoft/phi-2
Browse files
data/microsoft/phi-2/base/24-02-05-18:00:45.json
ADDED
@@ -0,0 +1,1162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"repellendus-laborum_lsat-rc_base": {
|
4 |
+
"acc,none": 0.26765799256505574,
|
5 |
+
"acc_stderr,none": 0.0270445453145873,
|
6 |
+
"alias": "repellendus-laborum_lsat-rc_base"
|
7 |
+
},
|
8 |
+
"repellendus-laborum_lsat-lr_base": {
|
9 |
+
"acc,none": 0.23137254901960785,
|
10 |
+
"acc_stderr,none": 0.018691965462419517,
|
11 |
+
"alias": "repellendus-laborum_lsat-lr_base"
|
12 |
+
},
|
13 |
+
"repellendus-laborum_lsat-ar_base": {
|
14 |
+
"acc,none": 0.25217391304347825,
|
15 |
+
"acc_stderr,none": 0.028696745294493366,
|
16 |
+
"alias": "repellendus-laborum_lsat-ar_base"
|
17 |
+
},
|
18 |
+
"repellendus-laborum_logiqa_base": {
|
19 |
+
"acc,none": 0.29073482428115016,
|
20 |
+
"acc_stderr,none": 0.0181640562091778,
|
21 |
+
"alias": "repellendus-laborum_logiqa_base"
|
22 |
+
},
|
23 |
+
"repellendus-laborum_logiqa2_base": {
|
24 |
+
"acc,none": 0.29389312977099236,
|
25 |
+
"acc_stderr,none": 0.011493223255677107,
|
26 |
+
"alias": "repellendus-laborum_logiqa2_base"
|
27 |
+
},
|
28 |
+
"possimus-voluptate_lsat-rc_base": {
|
29 |
+
"acc,none": 0.2527881040892193,
|
30 |
+
"acc_stderr,none": 0.026548061072649957,
|
31 |
+
"alias": "possimus-voluptate_lsat-rc_base"
|
32 |
+
},
|
33 |
+
"possimus-voluptate_lsat-lr_base": {
|
34 |
+
"acc,none": 0.22941176470588234,
|
35 |
+
"acc_stderr,none": 0.01863631913244453,
|
36 |
+
"alias": "possimus-voluptate_lsat-lr_base"
|
37 |
+
},
|
38 |
+
"possimus-voluptate_lsat-ar_base": {
|
39 |
+
"acc,none": 0.21739130434782608,
|
40 |
+
"acc_stderr,none": 0.02725685083881996,
|
41 |
+
"alias": "possimus-voluptate_lsat-ar_base"
|
42 |
+
},
|
43 |
+
"possimus-voluptate_logiqa_base": {
|
44 |
+
"acc,none": 0.2795527156549521,
|
45 |
+
"acc_stderr,none": 0.017951178003680606,
|
46 |
+
"alias": "possimus-voluptate_logiqa_base"
|
47 |
+
},
|
48 |
+
"possimus-voluptate_logiqa2_base": {
|
49 |
+
"acc,none": 0.2926208651399491,
|
50 |
+
"acc_stderr,none": 0.01147864633663911,
|
51 |
+
"alias": "possimus-voluptate_logiqa2_base"
|
52 |
+
},
|
53 |
+
"maxime-expedita_lsat-rc_base": {
|
54 |
+
"acc,none": 0.2527881040892193,
|
55 |
+
"acc_stderr,none": 0.026548061072649953,
|
56 |
+
"alias": "maxime-expedita_lsat-rc_base"
|
57 |
+
},
|
58 |
+
"maxime-expedita_lsat-lr_base": {
|
59 |
+
"acc,none": 0.24705882352941178,
|
60 |
+
"acc_stderr,none": 0.019117091440867724,
|
61 |
+
"alias": "maxime-expedita_lsat-lr_base"
|
62 |
+
},
|
63 |
+
"maxime-expedita_lsat-ar_base": {
|
64 |
+
"acc,none": 0.23478260869565218,
|
65 |
+
"acc_stderr,none": 0.028009647070930132,
|
66 |
+
"alias": "maxime-expedita_lsat-ar_base"
|
67 |
+
},
|
68 |
+
"maxime-expedita_logiqa_base": {
|
69 |
+
"acc,none": 0.2971246006389776,
|
70 |
+
"acc_stderr,none": 0.018279674935144995,
|
71 |
+
"alias": "maxime-expedita_logiqa_base"
|
72 |
+
},
|
73 |
+
"maxime-expedita_logiqa2_base": {
|
74 |
+
"acc,none": 0.27099236641221375,
|
75 |
+
"acc_stderr,none": 0.011213894711527516,
|
76 |
+
"alias": "maxime-expedita_logiqa2_base"
|
77 |
+
},
|
78 |
+
"eveniet-ea_lsat-rc_base": {
|
79 |
+
"acc,none": 0.2899628252788104,
|
80 |
+
"acc_stderr,none": 0.027716877855226897,
|
81 |
+
"alias": "eveniet-ea_lsat-rc_base"
|
82 |
+
},
|
83 |
+
"eveniet-ea_lsat-lr_base": {
|
84 |
+
"acc,none": 0.23333333333333334,
|
85 |
+
"acc_stderr,none": 0.01874704371659074,
|
86 |
+
"alias": "eveniet-ea_lsat-lr_base"
|
87 |
+
},
|
88 |
+
"eveniet-ea_lsat-ar_base": {
|
89 |
+
"acc,none": 0.2217391304347826,
|
90 |
+
"acc_stderr,none": 0.02745149660405891,
|
91 |
+
"alias": "eveniet-ea_lsat-ar_base"
|
92 |
+
},
|
93 |
+
"eveniet-ea_logiqa_base": {
|
94 |
+
"acc,none": 0.2955271565495208,
|
95 |
+
"acc_stderr,none": 0.018251174484565112,
|
96 |
+
"alias": "eveniet-ea_logiqa_base"
|
97 |
+
},
|
98 |
+
"eveniet-ea_logiqa2_base": {
|
99 |
+
"acc,none": 0.2837150127226463,
|
100 |
+
"acc_stderr,none": 0.011373548669758796,
|
101 |
+
"alias": "eveniet-ea_logiqa2_base"
|
102 |
+
},
|
103 |
+
"distinctio-unde_lsat-rc_base": {
|
104 |
+
"acc,none": 0.26394052044609667,
|
105 |
+
"acc_stderr,none": 0.026924155643902548,
|
106 |
+
"alias": "distinctio-unde_lsat-rc_base"
|
107 |
+
},
|
108 |
+
"distinctio-unde_lsat-lr_base": {
|
109 |
+
"acc,none": 0.2647058823529412,
|
110 |
+
"acc_stderr,none": 0.019554803257850088,
|
111 |
+
"alias": "distinctio-unde_lsat-lr_base"
|
112 |
+
},
|
113 |
+
"distinctio-unde_lsat-ar_base": {
|
114 |
+
"acc,none": 0.24347826086956523,
|
115 |
+
"acc_stderr,none": 0.028361099300075063,
|
116 |
+
"alias": "distinctio-unde_lsat-ar_base"
|
117 |
+
},
|
118 |
+
"distinctio-unde_logiqa_base": {
|
119 |
+
"acc,none": 0.3003194888178914,
|
120 |
+
"acc_stderr,none": 0.01833587493212361,
|
121 |
+
"alias": "distinctio-unde_logiqa_base"
|
122 |
+
},
|
123 |
+
"distinctio-unde_logiqa2_base": {
|
124 |
+
"acc,none": 0.2970737913486005,
|
125 |
+
"acc_stderr,none": 0.011529193947365896,
|
126 |
+
"alias": "distinctio-unde_logiqa2_base"
|
127 |
+
},
|
128 |
+
"aspernatur-sint_lsat-rc_base": {
|
129 |
+
"acc,none": 0.26765799256505574,
|
130 |
+
"acc_stderr,none": 0.027044545314587293,
|
131 |
+
"alias": "aspernatur-sint_lsat-rc_base"
|
132 |
+
},
|
133 |
+
"aspernatur-sint_lsat-lr_base": {
|
134 |
+
"acc,none": 0.27058823529411763,
|
135 |
+
"acc_stderr,none": 0.0196916426487322,
|
136 |
+
"alias": "aspernatur-sint_lsat-lr_base"
|
137 |
+
},
|
138 |
+
"aspernatur-sint_lsat-ar_base": {
|
139 |
+
"acc,none": 0.2217391304347826,
|
140 |
+
"acc_stderr,none": 0.027451496604058913,
|
141 |
+
"alias": "aspernatur-sint_lsat-ar_base"
|
142 |
+
},
|
143 |
+
"aspernatur-sint_logiqa_base": {
|
144 |
+
"acc,none": 0.2955271565495208,
|
145 |
+
"acc_stderr,none": 0.018251174484565112,
|
146 |
+
"alias": "aspernatur-sint_logiqa_base"
|
147 |
+
},
|
148 |
+
"aspernatur-sint_logiqa2_base": {
|
149 |
+
"acc,none": 0.2868956743002545,
|
150 |
+
"acc_stderr,none": 0.01141170254782954,
|
151 |
+
"alias": "aspernatur-sint_logiqa2_base"
|
152 |
+
}
|
153 |
+
},
|
154 |
+
"configs": {
|
155 |
+
"aspernatur-sint_logiqa2_base": {
|
156 |
+
"task": "aspernatur-sint_logiqa2_base",
|
157 |
+
"group": "logikon-bench",
|
158 |
+
"dataset_path": "logikon/cot-eval-traces",
|
159 |
+
"dataset_kwargs": {
|
160 |
+
"data_files": {
|
161 |
+
"test": "aspernatur-sint-logiqa2/test-00000-of-00001.parquet"
|
162 |
+
}
|
163 |
+
},
|
164 |
+
"test_split": "test",
|
165 |
+
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
|
166 |
+
"doc_to_target": "{{answer}}",
|
167 |
+
"doc_to_choice": "{{options}}",
|
168 |
+
"description": "",
|
169 |
+
"target_delimiter": " ",
|
170 |
+
"fewshot_delimiter": "\n\n",
|
171 |
+
"num_fewshot": 0,
|
172 |
+
"metric_list": [
|
173 |
+
{
|
174 |
+
"metric": "acc",
|
175 |
+
"aggregation": "mean",
|
176 |
+
"higher_is_better": true
|
177 |
+
}
|
178 |
+
],
|
179 |
+
"output_type": "multiple_choice",
|
180 |
+
"repeats": 1,
|
181 |
+
"should_decontaminate": false,
|
182 |
+
"metadata": {
|
183 |
+
"version": 0.0
|
184 |
+
}
|
185 |
+
},
|
186 |
+
"aspernatur-sint_logiqa_base": {
|
187 |
+
"task": "aspernatur-sint_logiqa_base",
|
188 |
+
"group": "logikon-bench",
|
189 |
+
"dataset_path": "logikon/cot-eval-traces",
|
190 |
+
"dataset_kwargs": {
|
191 |
+
"data_files": {
|
192 |
+
"test": "aspernatur-sint-logiqa/test-00000-of-00001.parquet"
|
193 |
+
}
|
194 |
+
},
|
195 |
+
"test_split": "test",
|
196 |
+
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
|
197 |
+
"doc_to_target": "{{answer}}",
|
198 |
+
"doc_to_choice": "{{options}}",
|
199 |
+
"description": "",
|
200 |
+
"target_delimiter": " ",
|
201 |
+
"fewshot_delimiter": "\n\n",
|
202 |
+
"num_fewshot": 0,
|
203 |
+
"metric_list": [
|
204 |
+
{
|
205 |
+
"metric": "acc",
|
206 |
+
"aggregation": "mean",
|
207 |
+
"higher_is_better": true
|
208 |
+
}
|
209 |
+
],
|
210 |
+
"output_type": "multiple_choice",
|
211 |
+
"repeats": 1,
|
212 |
+
"should_decontaminate": false,
|
213 |
+
"metadata": {
|
214 |
+
"version": 0.0
|
215 |
+
}
|
216 |
+
},
|
217 |
+
"aspernatur-sint_lsat-ar_base": {
|
218 |
+
"task": "aspernatur-sint_lsat-ar_base",
|
219 |
+
"group": "logikon-bench",
|
220 |
+
"dataset_path": "logikon/cot-eval-traces",
|
221 |
+
"dataset_kwargs": {
|
222 |
+
"data_files": {
|
223 |
+
"test": "aspernatur-sint-lsat-ar/test-00000-of-00001.parquet"
|
224 |
+
}
|
225 |
+
},
|
226 |
+
"test_split": "test",
|
227 |
+
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
|
228 |
+
"doc_to_target": "{{answer}}",
|
229 |
+
"doc_to_choice": "{{options}}",
|
230 |
+
"description": "",
|
231 |
+
"target_delimiter": " ",
|
232 |
+
"fewshot_delimiter": "\n\n",
|
233 |
+
"num_fewshot": 0,
|
234 |
+
"metric_list": [
|
235 |
+
{
|
236 |
+
"metric": "acc",
|
237 |
+
"aggregation": "mean",
|
238 |
+
"higher_is_better": true
|
239 |
+
}
|
240 |
+
],
|
241 |
+
"output_type": "multiple_choice",
|
242 |
+
"repeats": 1,
|
243 |
+
"should_decontaminate": false,
|
244 |
+
"metadata": {
|
245 |
+
"version": 0.0
|
246 |
+
}
|
247 |
+
},
|
248 |
+
"aspernatur-sint_lsat-lr_base": {
|
249 |
+
"task": "aspernatur-sint_lsat-lr_base",
|
250 |
+
"group": "logikon-bench",
|
251 |
+
"dataset_path": "logikon/cot-eval-traces",
|
252 |
+
"dataset_kwargs": {
|
253 |
+
"data_files": {
|
254 |
+
"test": "aspernatur-sint-lsat-lr/test-00000-of-00001.parquet"
|
255 |
+
}
|
256 |
+
},
|
257 |
+
"test_split": "test",
|
258 |
+
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
|
259 |
+
"doc_to_target": "{{answer}}",
|
260 |
+
"doc_to_choice": "{{options}}",
|
261 |
+
"description": "",
|
262 |
+
"target_delimiter": " ",
|
263 |
+
"fewshot_delimiter": "\n\n",
|
264 |
+
"num_fewshot": 0,
|
265 |
+
"metric_list": [
|
266 |
+
{
|
267 |
+
"metric": "acc",
|
268 |
+
"aggregation": "mean",
|
269 |
+
"higher_is_better": true
|
270 |
+
}
|
271 |
+
],
|
272 |
+
"output_type": "multiple_choice",
|
273 |
+
"repeats": 1,
|
274 |
+
"should_decontaminate": false,
|
275 |
+
"metadata": {
|
276 |
+
"version": 0.0
|
277 |
+
}
|
278 |
+
},
|
279 |
+
"aspernatur-sint_lsat-rc_base": {
|
280 |
+
"task": "aspernatur-sint_lsat-rc_base",
|
281 |
+
"group": "logikon-bench",
|
282 |
+
"dataset_path": "logikon/cot-eval-traces",
|
283 |
+
"dataset_kwargs": {
|
284 |
+
"data_files": {
|
285 |
+
"test": "aspernatur-sint-lsat-rc/test-00000-of-00001.parquet"
|
286 |
+
}
|
287 |
+
},
|
288 |
+
"test_split": "test",
|
289 |
+
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
|
290 |
+
"doc_to_target": "{{answer}}",
|
291 |
+
"doc_to_choice": "{{options}}",
|
292 |
+
"description": "",
|
293 |
+
"target_delimiter": " ",
|
294 |
+
"fewshot_delimiter": "\n\n",
|
295 |
+
"num_fewshot": 0,
|
296 |
+
"metric_list": [
|
297 |
+
{
|
298 |
+
"metric": "acc",
|
299 |
+
"aggregation": "mean",
|
300 |
+
"higher_is_better": true
|
301 |
+
}
|
302 |
+
],
|
303 |
+
"output_type": "multiple_choice",
|
304 |
+
"repeats": 1,
|
305 |
+
"should_decontaminate": false,
|
306 |
+
"metadata": {
|
307 |
+
"version": 0.0
|
308 |
+
}
|
309 |
+
},
|
310 |
+
"distinctio-unde_logiqa2_base": {
|
311 |
+
"task": "distinctio-unde_logiqa2_base",
|
312 |
+
"group": "logikon-bench",
|
313 |
+
"dataset_path": "logikon/cot-eval-traces",
|
314 |
+
"dataset_kwargs": {
|
315 |
+
"data_files": {
|
316 |
+
"test": "distinctio-unde-logiqa2/test-00000-of-00001.parquet"
|
317 |
+
}
|
318 |
+
},
|
319 |
+
"test_split": "test",
|
320 |
+
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
|
321 |
+
"doc_to_target": "{{answer}}",
|
322 |
+
"doc_to_choice": "{{options}}",
|
323 |
+
"description": "",
|
324 |
+
"target_delimiter": " ",
|
325 |
+
"fewshot_delimiter": "\n\n",
|
326 |
+
"num_fewshot": 0,
|
327 |
+
"metric_list": [
|
328 |
+
{
|
329 |
+
"metric": "acc",
|
330 |
+
"aggregation": "mean",
|
331 |
+
"higher_is_better": true
|
332 |
+
}
|
333 |
+
],
|
334 |
+
"output_type": "multiple_choice",
|
335 |
+
"repeats": 1,
|
336 |
+
"should_decontaminate": false,
|
337 |
+
"metadata": {
|
338 |
+
"version": 0.0
|
339 |
+
}
|
340 |
+
},
|
341 |
+
"distinctio-unde_logiqa_base": {
|
342 |
+
"task": "distinctio-unde_logiqa_base",
|
343 |
+
"group": "logikon-bench",
|
344 |
+
"dataset_path": "logikon/cot-eval-traces",
|
345 |
+
"dataset_kwargs": {
|
346 |
+
"data_files": {
|
347 |
+
"test": "distinctio-unde-logiqa/test-00000-of-00001.parquet"
|
348 |
+
}
|
349 |
+
},
|
350 |
+
"test_split": "test",
|
351 |
+
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
|
352 |
+
"doc_to_target": "{{answer}}",
|
353 |
+
"doc_to_choice": "{{options}}",
|
354 |
+
"description": "",
|
355 |
+
"target_delimiter": " ",
|
356 |
+
"fewshot_delimiter": "\n\n",
|
357 |
+
"num_fewshot": 0,
|
358 |
+
"metric_list": [
|
359 |
+
{
|
360 |
+
"metric": "acc",
|
361 |
+
"aggregation": "mean",
|
362 |
+
"higher_is_better": true
|
363 |
+
}
|
364 |
+
],
|
365 |
+
"output_type": "multiple_choice",
|
366 |
+
"repeats": 1,
|
367 |
+
"should_decontaminate": false,
|
368 |
+
"metadata": {
|
369 |
+
"version": 0.0
|
370 |
+
}
|
371 |
+
},
|
372 |
+
"distinctio-unde_lsat-ar_base": {
|
373 |
+
"task": "distinctio-unde_lsat-ar_base",
|
374 |
+
"group": "logikon-bench",
|
375 |
+
"dataset_path": "logikon/cot-eval-traces",
|
376 |
+
"dataset_kwargs": {
|
377 |
+
"data_files": {
|
378 |
+
"test": "distinctio-unde-lsat-ar/test-00000-of-00001.parquet"
|
379 |
+
}
|
380 |
+
},
|
381 |
+
"test_split": "test",
|
382 |
+
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
|
383 |
+
"doc_to_target": "{{answer}}",
|
384 |
+
"doc_to_choice": "{{options}}",
|
385 |
+
"description": "",
|
386 |
+
"target_delimiter": " ",
|
387 |
+
"fewshot_delimiter": "\n\n",
|
388 |
+
"num_fewshot": 0,
|
389 |
+
"metric_list": [
|
390 |
+
{
|
391 |
+
"metric": "acc",
|
392 |
+
"aggregation": "mean",
|
393 |
+
"higher_is_better": true
|
394 |
+
}
|
395 |
+
],
|
396 |
+
"output_type": "multiple_choice",
|
397 |
+
"repeats": 1,
|
398 |
+
"should_decontaminate": false,
|
399 |
+
"metadata": {
|
400 |
+
"version": 0.0
|
401 |
+
}
|
402 |
+
},
|
403 |
+
"distinctio-unde_lsat-lr_base": {
|
404 |
+
"task": "distinctio-unde_lsat-lr_base",
|
405 |
+
"group": "logikon-bench",
|
406 |
+
"dataset_path": "logikon/cot-eval-traces",
|
407 |
+
"dataset_kwargs": {
|
408 |
+
"data_files": {
|
409 |
+
"test": "distinctio-unde-lsat-lr/test-00000-of-00001.parquet"
|
410 |
+
}
|
411 |
+
},
|
412 |
+
"test_split": "test",
|
413 |
+
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
|
414 |
+
"doc_to_target": "{{answer}}",
|
415 |
+
"doc_to_choice": "{{options}}",
|
416 |
+
"description": "",
|
417 |
+
"target_delimiter": " ",
|
418 |
+
"fewshot_delimiter": "\n\n",
|
419 |
+
"num_fewshot": 0,
|
420 |
+
"metric_list": [
|
421 |
+
{
|
422 |
+
"metric": "acc",
|
423 |
+
"aggregation": "mean",
|
424 |
+
"higher_is_better": true
|
425 |
+
}
|
426 |
+
],
|
427 |
+
"output_type": "multiple_choice",
|
428 |
+
"repeats": 1,
|
429 |
+
"should_decontaminate": false,
|
430 |
+
"metadata": {
|
431 |
+
"version": 0.0
|
432 |
+
}
|
433 |
+
},
|
434 |
+
"distinctio-unde_lsat-rc_base": {
|
435 |
+
"task": "distinctio-unde_lsat-rc_base",
|
436 |
+
"group": "logikon-bench",
|
437 |
+
"dataset_path": "logikon/cot-eval-traces",
|
438 |
+
"dataset_kwargs": {
|
439 |
+
"data_files": {
|
440 |
+
"test": "distinctio-unde-lsat-rc/test-00000-of-00001.parquet"
|
441 |
+
}
|
442 |
+
},
|
443 |
+
"test_split": "test",
|
444 |
+
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
|
445 |
+
"doc_to_target": "{{answer}}",
|
446 |
+
"doc_to_choice": "{{options}}",
|
447 |
+
"description": "",
|
448 |
+
"target_delimiter": " ",
|
449 |
+
"fewshot_delimiter": "\n\n",
|
450 |
+
"num_fewshot": 0,
|
451 |
+
"metric_list": [
|
452 |
+
{
|
453 |
+
"metric": "acc",
|
454 |
+
"aggregation": "mean",
|
455 |
+
"higher_is_better": true
|
456 |
+
}
|
457 |
+
],
|
458 |
+
"output_type": "multiple_choice",
|
459 |
+
"repeats": 1,
|
460 |
+
"should_decontaminate": false,
|
461 |
+
"metadata": {
|
462 |
+
"version": 0.0
|
463 |
+
}
|
464 |
+
},
|
465 |
+
"eveniet-ea_logiqa2_base": {
|
466 |
+
"task": "eveniet-ea_logiqa2_base",
|
467 |
+
"group": "logikon-bench",
|
468 |
+
"dataset_path": "logikon/cot-eval-traces",
|
469 |
+
"dataset_kwargs": {
|
470 |
+
"data_files": {
|
471 |
+
"test": "eveniet-ea-logiqa2/test-00000-of-00001.parquet"
|
472 |
+
}
|
473 |
+
},
|
474 |
+
"test_split": "test",
|
475 |
+
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
|
476 |
+
"doc_to_target": "{{answer}}",
|
477 |
+
"doc_to_choice": "{{options}}",
|
478 |
+
"description": "",
|
479 |
+
"target_delimiter": " ",
|
480 |
+
"fewshot_delimiter": "\n\n",
|
481 |
+
"num_fewshot": 0,
|
482 |
+
"metric_list": [
|
483 |
+
{
|
484 |
+
"metric": "acc",
|
485 |
+
"aggregation": "mean",
|
486 |
+
"higher_is_better": true
|
487 |
+
}
|
488 |
+
],
|
489 |
+
"output_type": "multiple_choice",
|
490 |
+
"repeats": 1,
|
491 |
+
"should_decontaminate": false,
|
492 |
+
"metadata": {
|
493 |
+
"version": 0.0
|
494 |
+
}
|
495 |
+
},
|
496 |
+
"eveniet-ea_logiqa_base": {
|
497 |
+
"task": "eveniet-ea_logiqa_base",
|
498 |
+
"group": "logikon-bench",
|
499 |
+
"dataset_path": "logikon/cot-eval-traces",
|
500 |
+
"dataset_kwargs": {
|
501 |
+
"data_files": {
|
502 |
+
"test": "eveniet-ea-logiqa/test-00000-of-00001.parquet"
|
503 |
+
}
|
504 |
+
},
|
505 |
+
"test_split": "test",
|
506 |
+
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
|
507 |
+
"doc_to_target": "{{answer}}",
|
508 |
+
"doc_to_choice": "{{options}}",
|
509 |
+
"description": "",
|
510 |
+
"target_delimiter": " ",
|
511 |
+
"fewshot_delimiter": "\n\n",
|
512 |
+
"num_fewshot": 0,
|
513 |
+
"metric_list": [
|
514 |
+
{
|
515 |
+
"metric": "acc",
|
516 |
+
"aggregation": "mean",
|
517 |
+
"higher_is_better": true
|
518 |
+
}
|
519 |
+
],
|
520 |
+
"output_type": "multiple_choice",
|
521 |
+
"repeats": 1,
|
522 |
+
"should_decontaminate": false,
|
523 |
+
"metadata": {
|
524 |
+
"version": 0.0
|
525 |
+
}
|
526 |
+
},
|
527 |
+
"eveniet-ea_lsat-ar_base": {
|
528 |
+
"task": "eveniet-ea_lsat-ar_base",
|
529 |
+
"group": "logikon-bench",
|
530 |
+
"dataset_path": "logikon/cot-eval-traces",
|
531 |
+
"dataset_kwargs": {
|
532 |
+
"data_files": {
|
533 |
+
"test": "eveniet-ea-lsat-ar/test-00000-of-00001.parquet"
|
534 |
+
}
|
535 |
+
},
|
536 |
+
"test_split": "test",
|
537 |
+
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
|
538 |
+
"doc_to_target": "{{answer}}",
|
539 |
+
"doc_to_choice": "{{options}}",
|
540 |
+
"description": "",
|
541 |
+
"target_delimiter": " ",
|
542 |
+
"fewshot_delimiter": "\n\n",
|
543 |
+
"num_fewshot": 0,
|
544 |
+
"metric_list": [
|
545 |
+
{
|
546 |
+
"metric": "acc",
|
547 |
+
"aggregation": "mean",
|
548 |
+
"higher_is_better": true
|
549 |
+
}
|
550 |
+
],
|
551 |
+
"output_type": "multiple_choice",
|
552 |
+
"repeats": 1,
|
553 |
+
"should_decontaminate": false,
|
554 |
+
"metadata": {
|
555 |
+
"version": 0.0
|
556 |
+
}
|
557 |
+
},
|
558 |
+
"eveniet-ea_lsat-lr_base": {
|
559 |
+
"task": "eveniet-ea_lsat-lr_base",
|
560 |
+
"group": "logikon-bench",
|
561 |
+
"dataset_path": "logikon/cot-eval-traces",
|
562 |
+
"dataset_kwargs": {
|
563 |
+
"data_files": {
|
564 |
+
"test": "eveniet-ea-lsat-lr/test-00000-of-00001.parquet"
|
565 |
+
}
|
566 |
+
},
|
567 |
+
"test_split": "test",
|
568 |
+
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
|
569 |
+
"doc_to_target": "{{answer}}",
|
570 |
+
"doc_to_choice": "{{options}}",
|
571 |
+
"description": "",
|
572 |
+
"target_delimiter": " ",
|
573 |
+
"fewshot_delimiter": "\n\n",
|
574 |
+
"num_fewshot": 0,
|
575 |
+
"metric_list": [
|
576 |
+
{
|
577 |
+
"metric": "acc",
|
578 |
+
"aggregation": "mean",
|
579 |
+
"higher_is_better": true
|
580 |
+
}
|
581 |
+
],
|
582 |
+
"output_type": "multiple_choice",
|
583 |
+
"repeats": 1,
|
584 |
+
"should_decontaminate": false,
|
585 |
+
"metadata": {
|
586 |
+
"version": 0.0
|
587 |
+
}
|
588 |
+
},
|
589 |
+
"eveniet-ea_lsat-rc_base": {
|
590 |
+
"task": "eveniet-ea_lsat-rc_base",
|
591 |
+
"group": "logikon-bench",
|
592 |
+
"dataset_path": "logikon/cot-eval-traces",
|
593 |
+
"dataset_kwargs": {
|
594 |
+
"data_files": {
|
595 |
+
"test": "eveniet-ea-lsat-rc/test-00000-of-00001.parquet"
|
596 |
+
}
|
597 |
+
},
|
598 |
+
"test_split": "test",
|
599 |
+
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
|
600 |
+
"doc_to_target": "{{answer}}",
|
601 |
+
"doc_to_choice": "{{options}}",
|
602 |
+
"description": "",
|
603 |
+
"target_delimiter": " ",
|
604 |
+
"fewshot_delimiter": "\n\n",
|
605 |
+
"num_fewshot": 0,
|
606 |
+
"metric_list": [
|
607 |
+
{
|
608 |
+
"metric": "acc",
|
609 |
+
"aggregation": "mean",
|
610 |
+
"higher_is_better": true
|
611 |
+
}
|
612 |
+
],
|
613 |
+
"output_type": "multiple_choice",
|
614 |
+
"repeats": 1,
|
615 |
+
"should_decontaminate": false,
|
616 |
+
"metadata": {
|
617 |
+
"version": 0.0
|
618 |
+
}
|
619 |
+
},
|
620 |
+
"maxime-expedita_logiqa2_base": {
|
621 |
+
"task": "maxime-expedita_logiqa2_base",
|
622 |
+
"group": "logikon-bench",
|
623 |
+
"dataset_path": "logikon/cot-eval-traces",
|
624 |
+
"dataset_kwargs": {
|
625 |
+
"data_files": {
|
626 |
+
"test": "maxime-expedita-logiqa2/test-00000-of-00001.parquet"
|
627 |
+
}
|
628 |
+
},
|
629 |
+
"test_split": "test",
|
630 |
+
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
|
631 |
+
"doc_to_target": "{{answer}}",
|
632 |
+
"doc_to_choice": "{{options}}",
|
633 |
+
"description": "",
|
634 |
+
"target_delimiter": " ",
|
635 |
+
"fewshot_delimiter": "\n\n",
|
636 |
+
"num_fewshot": 0,
|
637 |
+
"metric_list": [
|
638 |
+
{
|
639 |
+
"metric": "acc",
|
640 |
+
"aggregation": "mean",
|
641 |
+
"higher_is_better": true
|
642 |
+
}
|
643 |
+
],
|
644 |
+
"output_type": "multiple_choice",
|
645 |
+
"repeats": 1,
|
646 |
+
"should_decontaminate": false,
|
647 |
+
"metadata": {
|
648 |
+
"version": 0.0
|
649 |
+
}
|
650 |
+
},
|
651 |
+
"maxime-expedita_logiqa_base": {
|
652 |
+
"task": "maxime-expedita_logiqa_base",
|
653 |
+
"group": "logikon-bench",
|
654 |
+
"dataset_path": "logikon/cot-eval-traces",
|
655 |
+
"dataset_kwargs": {
|
656 |
+
"data_files": {
|
657 |
+
"test": "maxime-expedita-logiqa/test-00000-of-00001.parquet"
|
658 |
+
}
|
659 |
+
},
|
660 |
+
"test_split": "test",
|
661 |
+
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
|
662 |
+
"doc_to_target": "{{answer}}",
|
663 |
+
"doc_to_choice": "{{options}}",
|
664 |
+
"description": "",
|
665 |
+
"target_delimiter": " ",
|
666 |
+
"fewshot_delimiter": "\n\n",
|
667 |
+
"num_fewshot": 0,
|
668 |
+
"metric_list": [
|
669 |
+
{
|
670 |
+
"metric": "acc",
|
671 |
+
"aggregation": "mean",
|
672 |
+
"higher_is_better": true
|
673 |
+
}
|
674 |
+
],
|
675 |
+
"output_type": "multiple_choice",
|
676 |
+
"repeats": 1,
|
677 |
+
"should_decontaminate": false,
|
678 |
+
"metadata": {
|
679 |
+
"version": 0.0
|
680 |
+
}
|
681 |
+
},
|
682 |
+
"maxime-expedita_lsat-ar_base": {
|
683 |
+
"task": "maxime-expedita_lsat-ar_base",
|
684 |
+
"group": "logikon-bench",
|
685 |
+
"dataset_path": "logikon/cot-eval-traces",
|
686 |
+
"dataset_kwargs": {
|
687 |
+
"data_files": {
|
688 |
+
"test": "maxime-expedita-lsat-ar/test-00000-of-00001.parquet"
|
689 |
+
}
|
690 |
+
},
|
691 |
+
"test_split": "test",
|
692 |
+
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
|
693 |
+
"doc_to_target": "{{answer}}",
|
694 |
+
"doc_to_choice": "{{options}}",
|
695 |
+
"description": "",
|
696 |
+
"target_delimiter": " ",
|
697 |
+
"fewshot_delimiter": "\n\n",
|
698 |
+
"num_fewshot": 0,
|
699 |
+
"metric_list": [
|
700 |
+
{
|
701 |
+
"metric": "acc",
|
702 |
+
"aggregation": "mean",
|
703 |
+
"higher_is_better": true
|
704 |
+
}
|
705 |
+
],
|
706 |
+
"output_type": "multiple_choice",
|
707 |
+
"repeats": 1,
|
708 |
+
"should_decontaminate": false,
|
709 |
+
"metadata": {
|
710 |
+
"version": 0.0
|
711 |
+
}
|
712 |
+
},
|
713 |
+
"maxime-expedita_lsat-lr_base": {
|
714 |
+
"task": "maxime-expedita_lsat-lr_base",
|
715 |
+
"group": "logikon-bench",
|
716 |
+
"dataset_path": "logikon/cot-eval-traces",
|
717 |
+
"dataset_kwargs": {
|
718 |
+
"data_files": {
|
719 |
+
"test": "maxime-expedita-lsat-lr/test-00000-of-00001.parquet"
|
720 |
+
}
|
721 |
+
},
|
722 |
+
"test_split": "test",
|
723 |
+
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
|
724 |
+
"doc_to_target": "{{answer}}",
|
725 |
+
"doc_to_choice": "{{options}}",
|
726 |
+
"description": "",
|
727 |
+
"target_delimiter": " ",
|
728 |
+
"fewshot_delimiter": "\n\n",
|
729 |
+
"num_fewshot": 0,
|
730 |
+
"metric_list": [
|
731 |
+
{
|
732 |
+
"metric": "acc",
|
733 |
+
"aggregation": "mean",
|
734 |
+
"higher_is_better": true
|
735 |
+
}
|
736 |
+
],
|
737 |
+
"output_type": "multiple_choice",
|
738 |
+
"repeats": 1,
|
739 |
+
"should_decontaminate": false,
|
740 |
+
"metadata": {
|
741 |
+
"version": 0.0
|
742 |
+
}
|
743 |
+
},
|
744 |
+
"maxime-expedita_lsat-rc_base": {
|
745 |
+
"task": "maxime-expedita_lsat-rc_base",
|
746 |
+
"group": "logikon-bench",
|
747 |
+
"dataset_path": "logikon/cot-eval-traces",
|
748 |
+
"dataset_kwargs": {
|
749 |
+
"data_files": {
|
750 |
+
"test": "maxime-expedita-lsat-rc/test-00000-of-00001.parquet"
|
751 |
+
}
|
752 |
+
},
|
753 |
+
"test_split": "test",
|
754 |
+
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
|
755 |
+
"doc_to_target": "{{answer}}",
|
756 |
+
"doc_to_choice": "{{options}}",
|
757 |
+
"description": "",
|
758 |
+
"target_delimiter": " ",
|
759 |
+
"fewshot_delimiter": "\n\n",
|
760 |
+
"num_fewshot": 0,
|
761 |
+
"metric_list": [
|
762 |
+
{
|
763 |
+
"metric": "acc",
|
764 |
+
"aggregation": "mean",
|
765 |
+
"higher_is_better": true
|
766 |
+
}
|
767 |
+
],
|
768 |
+
"output_type": "multiple_choice",
|
769 |
+
"repeats": 1,
|
770 |
+
"should_decontaminate": false,
|
771 |
+
"metadata": {
|
772 |
+
"version": 0.0
|
773 |
+
}
|
774 |
+
},
|
775 |
+
"possimus-voluptate_logiqa2_base": {
|
776 |
+
"task": "possimus-voluptate_logiqa2_base",
|
777 |
+
"group": "logikon-bench",
|
778 |
+
"dataset_path": "logikon/cot-eval-traces",
|
779 |
+
"dataset_kwargs": {
|
780 |
+
"data_files": {
|
781 |
+
"test": "possimus-voluptate-logiqa2/test-00000-of-00001.parquet"
|
782 |
+
}
|
783 |
+
},
|
784 |
+
"test_split": "test",
|
785 |
+
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
|
786 |
+
"doc_to_target": "{{answer}}",
|
787 |
+
"doc_to_choice": "{{options}}",
|
788 |
+
"description": "",
|
789 |
+
"target_delimiter": " ",
|
790 |
+
"fewshot_delimiter": "\n\n",
|
791 |
+
"num_fewshot": 0,
|
792 |
+
"metric_list": [
|
793 |
+
{
|
794 |
+
"metric": "acc",
|
795 |
+
"aggregation": "mean",
|
796 |
+
"higher_is_better": true
|
797 |
+
}
|
798 |
+
],
|
799 |
+
"output_type": "multiple_choice",
|
800 |
+
"repeats": 1,
|
801 |
+
"should_decontaminate": false,
|
802 |
+
"metadata": {
|
803 |
+
"version": 0.0
|
804 |
+
}
|
805 |
+
},
|
806 |
+
"possimus-voluptate_logiqa_base": {
|
807 |
+
"task": "possimus-voluptate_logiqa_base",
|
808 |
+
"group": "logikon-bench",
|
809 |
+
"dataset_path": "logikon/cot-eval-traces",
|
810 |
+
"dataset_kwargs": {
|
811 |
+
"data_files": {
|
812 |
+
"test": "possimus-voluptate-logiqa/test-00000-of-00001.parquet"
|
813 |
+
}
|
814 |
+
},
|
815 |
+
"test_split": "test",
|
816 |
+
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
|
817 |
+
"doc_to_target": "{{answer}}",
|
818 |
+
"doc_to_choice": "{{options}}",
|
819 |
+
"description": "",
|
820 |
+
"target_delimiter": " ",
|
821 |
+
"fewshot_delimiter": "\n\n",
|
822 |
+
"num_fewshot": 0,
|
823 |
+
"metric_list": [
|
824 |
+
{
|
825 |
+
"metric": "acc",
|
826 |
+
"aggregation": "mean",
|
827 |
+
"higher_is_better": true
|
828 |
+
}
|
829 |
+
],
|
830 |
+
"output_type": "multiple_choice",
|
831 |
+
"repeats": 1,
|
832 |
+
"should_decontaminate": false,
|
833 |
+
"metadata": {
|
834 |
+
"version": 0.0
|
835 |
+
}
|
836 |
+
},
|
837 |
+
"possimus-voluptate_lsat-ar_base": {
|
838 |
+
"task": "possimus-voluptate_lsat-ar_base",
|
839 |
+
"group": "logikon-bench",
|
840 |
+
"dataset_path": "logikon/cot-eval-traces",
|
841 |
+
"dataset_kwargs": {
|
842 |
+
"data_files": {
|
843 |
+
"test": "possimus-voluptate-lsat-ar/test-00000-of-00001.parquet"
|
844 |
+
}
|
845 |
+
},
|
846 |
+
"test_split": "test",
|
847 |
+
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
|
848 |
+
"doc_to_target": "{{answer}}",
|
849 |
+
"doc_to_choice": "{{options}}",
|
850 |
+
"description": "",
|
851 |
+
"target_delimiter": " ",
|
852 |
+
"fewshot_delimiter": "\n\n",
|
853 |
+
"num_fewshot": 0,
|
854 |
+
"metric_list": [
|
855 |
+
{
|
856 |
+
"metric": "acc",
|
857 |
+
"aggregation": "mean",
|
858 |
+
"higher_is_better": true
|
859 |
+
}
|
860 |
+
],
|
861 |
+
"output_type": "multiple_choice",
|
862 |
+
"repeats": 1,
|
863 |
+
"should_decontaminate": false,
|
864 |
+
"metadata": {
|
865 |
+
"version": 0.0
|
866 |
+
}
|
867 |
+
},
|
868 |
+
"possimus-voluptate_lsat-lr_base": {
|
869 |
+
"task": "possimus-voluptate_lsat-lr_base",
|
870 |
+
"group": "logikon-bench",
|
871 |
+
"dataset_path": "logikon/cot-eval-traces",
|
872 |
+
"dataset_kwargs": {
|
873 |
+
"data_files": {
|
874 |
+
"test": "possimus-voluptate-lsat-lr/test-00000-of-00001.parquet"
|
875 |
+
}
|
876 |
+
},
|
877 |
+
"test_split": "test",
|
878 |
+
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
|
879 |
+
"doc_to_target": "{{answer}}",
|
880 |
+
"doc_to_choice": "{{options}}",
|
881 |
+
"description": "",
|
882 |
+
"target_delimiter": " ",
|
883 |
+
"fewshot_delimiter": "\n\n",
|
884 |
+
"num_fewshot": 0,
|
885 |
+
"metric_list": [
|
886 |
+
{
|
887 |
+
"metric": "acc",
|
888 |
+
"aggregation": "mean",
|
889 |
+
"higher_is_better": true
|
890 |
+
}
|
891 |
+
],
|
892 |
+
"output_type": "multiple_choice",
|
893 |
+
"repeats": 1,
|
894 |
+
"should_decontaminate": false,
|
895 |
+
"metadata": {
|
896 |
+
"version": 0.0
|
897 |
+
}
|
898 |
+
},
|
899 |
+
"possimus-voluptate_lsat-rc_base": {
|
900 |
+
"task": "possimus-voluptate_lsat-rc_base",
|
901 |
+
"group": "logikon-bench",
|
902 |
+
"dataset_path": "logikon/cot-eval-traces",
|
903 |
+
"dataset_kwargs": {
|
904 |
+
"data_files": {
|
905 |
+
"test": "possimus-voluptate-lsat-rc/test-00000-of-00001.parquet"
|
906 |
+
}
|
907 |
+
},
|
908 |
+
"test_split": "test",
|
909 |
+
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
|
910 |
+
"doc_to_target": "{{answer}}",
|
911 |
+
"doc_to_choice": "{{options}}",
|
912 |
+
"description": "",
|
913 |
+
"target_delimiter": " ",
|
914 |
+
"fewshot_delimiter": "\n\n",
|
915 |
+
"num_fewshot": 0,
|
916 |
+
"metric_list": [
|
917 |
+
{
|
918 |
+
"metric": "acc",
|
919 |
+
"aggregation": "mean",
|
920 |
+
"higher_is_better": true
|
921 |
+
}
|
922 |
+
],
|
923 |
+
"output_type": "multiple_choice",
|
924 |
+
"repeats": 1,
|
925 |
+
"should_decontaminate": false,
|
926 |
+
"metadata": {
|
927 |
+
"version": 0.0
|
928 |
+
}
|
929 |
+
},
|
930 |
+
"repellendus-laborum_logiqa2_base": {
|
931 |
+
"task": "repellendus-laborum_logiqa2_base",
|
932 |
+
"group": "logikon-bench",
|
933 |
+
"dataset_path": "logikon/cot-eval-traces",
|
934 |
+
"dataset_kwargs": {
|
935 |
+
"data_files": {
|
936 |
+
"test": "repellendus-laborum-logiqa2/test-00000-of-00001.parquet"
|
937 |
+
}
|
938 |
+
},
|
939 |
+
"test_split": "test",
|
940 |
+
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
|
941 |
+
"doc_to_target": "{{answer}}",
|
942 |
+
"doc_to_choice": "{{options}}",
|
943 |
+
"description": "",
|
944 |
+
"target_delimiter": " ",
|
945 |
+
"fewshot_delimiter": "\n\n",
|
946 |
+
"num_fewshot": 0,
|
947 |
+
"metric_list": [
|
948 |
+
{
|
949 |
+
"metric": "acc",
|
950 |
+
"aggregation": "mean",
|
951 |
+
"higher_is_better": true
|
952 |
+
}
|
953 |
+
],
|
954 |
+
"output_type": "multiple_choice",
|
955 |
+
"repeats": 1,
|
956 |
+
"should_decontaminate": false,
|
957 |
+
"metadata": {
|
958 |
+
"version": 0.0
|
959 |
+
}
|
960 |
+
},
|
961 |
+
"repellendus-laborum_logiqa_base": {
|
962 |
+
"task": "repellendus-laborum_logiqa_base",
|
963 |
+
"group": "logikon-bench",
|
964 |
+
"dataset_path": "logikon/cot-eval-traces",
|
965 |
+
"dataset_kwargs": {
|
966 |
+
"data_files": {
|
967 |
+
"test": "repellendus-laborum-logiqa/test-00000-of-00001.parquet"
|
968 |
+
}
|
969 |
+
},
|
970 |
+
"test_split": "test",
|
971 |
+
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
|
972 |
+
"doc_to_target": "{{answer}}",
|
973 |
+
"doc_to_choice": "{{options}}",
|
974 |
+
"description": "",
|
975 |
+
"target_delimiter": " ",
|
976 |
+
"fewshot_delimiter": "\n\n",
|
977 |
+
"num_fewshot": 0,
|
978 |
+
"metric_list": [
|
979 |
+
{
|
980 |
+
"metric": "acc",
|
981 |
+
"aggregation": "mean",
|
982 |
+
"higher_is_better": true
|
983 |
+
}
|
984 |
+
],
|
985 |
+
"output_type": "multiple_choice",
|
986 |
+
"repeats": 1,
|
987 |
+
"should_decontaminate": false,
|
988 |
+
"metadata": {
|
989 |
+
"version": 0.0
|
990 |
+
}
|
991 |
+
},
|
992 |
+
"repellendus-laborum_lsat-ar_base": {
|
993 |
+
"task": "repellendus-laborum_lsat-ar_base",
|
994 |
+
"group": "logikon-bench",
|
995 |
+
"dataset_path": "logikon/cot-eval-traces",
|
996 |
+
"dataset_kwargs": {
|
997 |
+
"data_files": {
|
998 |
+
"test": "repellendus-laborum-lsat-ar/test-00000-of-00001.parquet"
|
999 |
+
}
|
1000 |
+
},
|
1001 |
+
"test_split": "test",
|
1002 |
+
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
|
1003 |
+
"doc_to_target": "{{answer}}",
|
1004 |
+
"doc_to_choice": "{{options}}",
|
1005 |
+
"description": "",
|
1006 |
+
"target_delimiter": " ",
|
1007 |
+
"fewshot_delimiter": "\n\n",
|
1008 |
+
"num_fewshot": 0,
|
1009 |
+
"metric_list": [
|
1010 |
+
{
|
1011 |
+
"metric": "acc",
|
1012 |
+
"aggregation": "mean",
|
1013 |
+
"higher_is_better": true
|
1014 |
+
}
|
1015 |
+
],
|
1016 |
+
"output_type": "multiple_choice",
|
1017 |
+
"repeats": 1,
|
1018 |
+
"should_decontaminate": false,
|
1019 |
+
"metadata": {
|
1020 |
+
"version": 0.0
|
1021 |
+
}
|
1022 |
+
},
|
1023 |
+
"repellendus-laborum_lsat-lr_base": {
|
1024 |
+
"task": "repellendus-laborum_lsat-lr_base",
|
1025 |
+
"group": "logikon-bench",
|
1026 |
+
"dataset_path": "logikon/cot-eval-traces",
|
1027 |
+
"dataset_kwargs": {
|
1028 |
+
"data_files": {
|
1029 |
+
"test": "repellendus-laborum-lsat-lr/test-00000-of-00001.parquet"
|
1030 |
+
}
|
1031 |
+
},
|
1032 |
+
"test_split": "test",
|
1033 |
+
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
|
1034 |
+
"doc_to_target": "{{answer}}",
|
1035 |
+
"doc_to_choice": "{{options}}",
|
1036 |
+
"description": "",
|
1037 |
+
"target_delimiter": " ",
|
1038 |
+
"fewshot_delimiter": "\n\n",
|
1039 |
+
"num_fewshot": 0,
|
1040 |
+
"metric_list": [
|
1041 |
+
{
|
1042 |
+
"metric": "acc",
|
1043 |
+
"aggregation": "mean",
|
1044 |
+
"higher_is_better": true
|
1045 |
+
}
|
1046 |
+
],
|
1047 |
+
"output_type": "multiple_choice",
|
1048 |
+
"repeats": 1,
|
1049 |
+
"should_decontaminate": false,
|
1050 |
+
"metadata": {
|
1051 |
+
"version": 0.0
|
1052 |
+
}
|
1053 |
+
},
|
1054 |
+
"repellendus-laborum_lsat-rc_base": {
|
1055 |
+
"task": "repellendus-laborum_lsat-rc_base",
|
1056 |
+
"group": "logikon-bench",
|
1057 |
+
"dataset_path": "logikon/cot-eval-traces",
|
1058 |
+
"dataset_kwargs": {
|
1059 |
+
"data_files": {
|
1060 |
+
"test": "repellendus-laborum-lsat-rc/test-00000-of-00001.parquet"
|
1061 |
+
}
|
1062 |
+
},
|
1063 |
+
"test_split": "test",
|
1064 |
+
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
|
1065 |
+
"doc_to_target": "{{answer}}",
|
1066 |
+
"doc_to_choice": "{{options}}",
|
1067 |
+
"description": "",
|
1068 |
+
"target_delimiter": " ",
|
1069 |
+
"fewshot_delimiter": "\n\n",
|
1070 |
+
"num_fewshot": 0,
|
1071 |
+
"metric_list": [
|
1072 |
+
{
|
1073 |
+
"metric": "acc",
|
1074 |
+
"aggregation": "mean",
|
1075 |
+
"higher_is_better": true
|
1076 |
+
}
|
1077 |
+
],
|
1078 |
+
"output_type": "multiple_choice",
|
1079 |
+
"repeats": 1,
|
1080 |
+
"should_decontaminate": false,
|
1081 |
+
"metadata": {
|
1082 |
+
"version": 0.0
|
1083 |
+
}
|
1084 |
+
}
|
1085 |
+
},
|
1086 |
+
"versions": {
|
1087 |
+
"aspernatur-sint_logiqa2_base": 0.0,
|
1088 |
+
"aspernatur-sint_logiqa_base": 0.0,
|
1089 |
+
"aspernatur-sint_lsat-ar_base": 0.0,
|
1090 |
+
"aspernatur-sint_lsat-lr_base": 0.0,
|
1091 |
+
"aspernatur-sint_lsat-rc_base": 0.0,
|
1092 |
+
"distinctio-unde_logiqa2_base": 0.0,
|
1093 |
+
"distinctio-unde_logiqa_base": 0.0,
|
1094 |
+
"distinctio-unde_lsat-ar_base": 0.0,
|
1095 |
+
"distinctio-unde_lsat-lr_base": 0.0,
|
1096 |
+
"distinctio-unde_lsat-rc_base": 0.0,
|
1097 |
+
"eveniet-ea_logiqa2_base": 0.0,
|
1098 |
+
"eveniet-ea_logiqa_base": 0.0,
|
1099 |
+
"eveniet-ea_lsat-ar_base": 0.0,
|
1100 |
+
"eveniet-ea_lsat-lr_base": 0.0,
|
1101 |
+
"eveniet-ea_lsat-rc_base": 0.0,
|
1102 |
+
"maxime-expedita_logiqa2_base": 0.0,
|
1103 |
+
"maxime-expedita_logiqa_base": 0.0,
|
1104 |
+
"maxime-expedita_lsat-ar_base": 0.0,
|
1105 |
+
"maxime-expedita_lsat-lr_base": 0.0,
|
1106 |
+
"maxime-expedita_lsat-rc_base": 0.0,
|
1107 |
+
"possimus-voluptate_logiqa2_base": 0.0,
|
1108 |
+
"possimus-voluptate_logiqa_base": 0.0,
|
1109 |
+
"possimus-voluptate_lsat-ar_base": 0.0,
|
1110 |
+
"possimus-voluptate_lsat-lr_base": 0.0,
|
1111 |
+
"possimus-voluptate_lsat-rc_base": 0.0,
|
1112 |
+
"repellendus-laborum_logiqa2_base": 0.0,
|
1113 |
+
"repellendus-laborum_logiqa_base": 0.0,
|
1114 |
+
"repellendus-laborum_lsat-ar_base": 0.0,
|
1115 |
+
"repellendus-laborum_lsat-lr_base": 0.0,
|
1116 |
+
"repellendus-laborum_lsat-rc_base": 0.0
|
1117 |
+
},
|
1118 |
+
"n-shot": {
|
1119 |
+
"aspernatur-sint_logiqa2_base": 0,
|
1120 |
+
"aspernatur-sint_logiqa_base": 0,
|
1121 |
+
"aspernatur-sint_lsat-ar_base": 0,
|
1122 |
+
"aspernatur-sint_lsat-lr_base": 0,
|
1123 |
+
"aspernatur-sint_lsat-rc_base": 0,
|
1124 |
+
"distinctio-unde_logiqa2_base": 0,
|
1125 |
+
"distinctio-unde_logiqa_base": 0,
|
1126 |
+
"distinctio-unde_lsat-ar_base": 0,
|
1127 |
+
"distinctio-unde_lsat-lr_base": 0,
|
1128 |
+
"distinctio-unde_lsat-rc_base": 0,
|
1129 |
+
"eveniet-ea_logiqa2_base": 0,
|
1130 |
+
"eveniet-ea_logiqa_base": 0,
|
1131 |
+
"eveniet-ea_lsat-ar_base": 0,
|
1132 |
+
"eveniet-ea_lsat-lr_base": 0,
|
1133 |
+
"eveniet-ea_lsat-rc_base": 0,
|
1134 |
+
"maxime-expedita_logiqa2_base": 0,
|
1135 |
+
"maxime-expedita_logiqa_base": 0,
|
1136 |
+
"maxime-expedita_lsat-ar_base": 0,
|
1137 |
+
"maxime-expedita_lsat-lr_base": 0,
|
1138 |
+
"maxime-expedita_lsat-rc_base": 0,
|
1139 |
+
"possimus-voluptate_logiqa2_base": 0,
|
1140 |
+
"possimus-voluptate_logiqa_base": 0,
|
1141 |
+
"possimus-voluptate_lsat-ar_base": 0,
|
1142 |
+
"possimus-voluptate_lsat-lr_base": 0,
|
1143 |
+
"possimus-voluptate_lsat-rc_base": 0,
|
1144 |
+
"repellendus-laborum_logiqa2_base": 0,
|
1145 |
+
"repellendus-laborum_logiqa_base": 0,
|
1146 |
+
"repellendus-laborum_lsat-ar_base": 0,
|
1147 |
+
"repellendus-laborum_lsat-lr_base": 0,
|
1148 |
+
"repellendus-laborum_lsat-rc_base": 0
|
1149 |
+
},
|
1150 |
+
"config": {
|
1151 |
+
"model": "vllm",
|
1152 |
+
"model_args": "pretrained=microsoft/phi-2,revision=main,dtype=auto,tensor_parallel_size=1,gpu_memory_utilization=0.9,trust_remote_code=true,max_length=2048",
|
1153 |
+
"batch_size": "auto",
|
1154 |
+
"batch_sizes": [],
|
1155 |
+
"device": null,
|
1156 |
+
"use_cache": null,
|
1157 |
+
"limit": null,
|
1158 |
+
"bootstrap_iters": 100000,
|
1159 |
+
"gen_kwargs": null
|
1160 |
+
},
|
1161 |
+
"git_hash": "3d5b980"
|
1162 |
+
}
|