{ "results": { "unde-laudantium_lsat-rc_base": { "acc,none": 0.30111524163568776, "acc_stderr,none": 0.028022169587612226, "alias": "unde-laudantium_lsat-rc_base" }, "unde-laudantium_lsat-lr_base": { "acc,none": 0.23529411764705882, "acc_stderr,none": 0.018801558887410304, "alias": "unde-laudantium_lsat-lr_base" }, "unde-laudantium_lsat-ar_base": { "acc,none": 0.20869565217391303, "acc_stderr,none": 0.026854108265439675, "alias": "unde-laudantium_lsat-ar_base" }, "unde-laudantium_logiqa_base": { "acc,none": 0.26996805111821087, "acc_stderr,none": 0.017757716181700637, "alias": "unde-laudantium_logiqa_base" }, "unde-laudantium_logiqa2_base": { "acc,none": 0.3256997455470738, "acc_stderr,none": 0.011823533300939599, "alias": "unde-laudantium_logiqa2_base" }, "temporibus-illo_lsat-rc_base": { "acc,none": 0.26394052044609667, "acc_stderr,none": 0.02692415564390256, "alias": "temporibus-illo_lsat-rc_base" }, "temporibus-illo_lsat-lr_base": { "acc,none": 0.21568627450980393, "acc_stderr,none": 0.018230445049830818, "alias": "temporibus-illo_lsat-lr_base" }, "temporibus-illo_lsat-ar_base": { "acc,none": 0.1826086956521739, "acc_stderr,none": 0.025530421952734174, "alias": "temporibus-illo_lsat-ar_base" }, "temporibus-illo_logiqa_base": { "acc,none": 0.26996805111821087, "acc_stderr,none": 0.017757716181700637, "alias": "temporibus-illo_logiqa_base" }, "temporibus-illo_logiqa2_base": { "acc,none": 0.3187022900763359, "acc_stderr,none": 0.011756362373408389, "alias": "temporibus-illo_logiqa2_base" }, "quo-non_lsat-rc_base": { "acc,none": 0.24907063197026022, "acc_stderr,none": 0.02641760298057974, "alias": "quo-non_lsat-rc_base" }, "quo-non_lsat-lr_base": { "acc,none": 0.2411764705882353, "acc_stderr,none": 0.018961774215004727, "alias": "quo-non_lsat-lr_base" }, "quo-non_lsat-ar_base": { "acc,none": 0.20434782608695654, "acc_stderr,none": 0.026645808150011344, "alias": "quo-non_lsat-ar_base" }, "quo-non_logiqa_base": { "acc,none": 0.25878594249201275, "acc_stderr,none": 0.01751871129783383, "alias": "quo-non_logiqa_base" }, "quo-non_logiqa2_base": { "acc,none": 0.30279898218829515, "acc_stderr,none": 0.011592260158888737, "alias": "quo-non_logiqa2_base" }, "magni-excepturi_lsat-rc_base": { "acc,none": 0.26022304832713755, "acc_stderr,none": 0.02680130130545777, "alias": "magni-excepturi_lsat-rc_base" }, "magni-excepturi_lsat-lr_base": { "acc,none": 0.22745098039215686, "acc_stderr,none": 0.018580099622603333, "alias": "magni-excepturi_lsat-lr_base" }, "magni-excepturi_lsat-ar_base": { "acc,none": 0.17391304347826086, "acc_stderr,none": 0.02504731738604972, "alias": "magni-excepturi_lsat-ar_base" }, "magni-excepturi_logiqa_base": { "acc,none": 0.25878594249201275, "acc_stderr,none": 0.01751871129783383, "alias": "magni-excepturi_logiqa_base" }, "magni-excepturi_logiqa2_base": { "acc,none": 0.30725190839694655, "acc_stderr,none": 0.011639836259579924, "alias": "magni-excepturi_logiqa2_base" }, "laboriosam-numquam_lsat-rc_base": { "acc,none": 0.27137546468401486, "acc_stderr,none": 0.027162503089239523, "alias": "laboriosam-numquam_lsat-rc_base" }, "laboriosam-numquam_lsat-lr_base": { "acc,none": 0.21372549019607842, "acc_stderr,none": 0.01817006027631824, "alias": "laboriosam-numquam_lsat-lr_base" }, "laboriosam-numquam_lsat-ar_base": { "acc,none": 0.21304347826086956, "acc_stderr,none": 0.027057754389936177, "alias": "laboriosam-numquam_lsat-ar_base" }, "laboriosam-numquam_logiqa_base": { "acc,none": 0.25559105431309903, "acc_stderr,none": 0.01744771697469749, "alias": "laboriosam-numquam_logiqa_base" }, "laboriosam-numquam_logiqa2_base": { "acc,none": 0.30725190839694655, "acc_stderr,none": 0.011639836259579922, "alias": "laboriosam-numquam_logiqa2_base" }, "dolore-possimus_lsat-rc_base": { "acc,none": 0.2862453531598513, "acc_stderr,none": 0.027610628966374826, "alias": "dolore-possimus_lsat-rc_base" }, "dolore-possimus_lsat-lr_base": { "acc,none": 0.2196078431372549, "acc_stderr,none": 0.01834938361142324, "alias": "dolore-possimus_lsat-lr_base" }, "dolore-possimus_lsat-ar_base": { "acc,none": 0.2217391304347826, "acc_stderr,none": 0.027451496604058916, "alias": "dolore-possimus_lsat-ar_base" }, "dolore-possimus_logiqa_base": { "acc,none": 0.2763578274760383, "acc_stderr,none": 0.01788783625456192, "alias": "dolore-possimus_logiqa_base" }, "dolore-possimus_logiqa2_base": { "acc,none": 0.2989821882951654, "acc_stderr,none": 0.011550454987784068, "alias": "dolore-possimus_logiqa2_base" } }, "configs": { "dolore-possimus_logiqa2_base": { "task": "dolore-possimus_logiqa2_base", "group": "logikon-bench", "dataset_path": "logikon/cot-eval-traces", "dataset_kwargs": { "data_files": { "test": "dolore-possimus-logiqa2/test-00000-of-00001.parquet" } }, "test_split": "test", "doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", "doc_to_target": "{{answer}}", "doc_to_choice": "{{options}}", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "dolore-possimus_logiqa_base": { "task": "dolore-possimus_logiqa_base", "group": "logikon-bench", "dataset_path": "logikon/cot-eval-traces", "dataset_kwargs": { "data_files": { "test": "dolore-possimus-logiqa/test-00000-of-00001.parquet" } }, "test_split": "test", "doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", "doc_to_target": "{{answer}}", "doc_to_choice": "{{options}}", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "dolore-possimus_lsat-ar_base": { "task": "dolore-possimus_lsat-ar_base", "group": "logikon-bench", "dataset_path": "logikon/cot-eval-traces", "dataset_kwargs": { "data_files": { "test": "dolore-possimus-lsat-ar/test-00000-of-00001.parquet" } }, "test_split": "test", "doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", "doc_to_target": "{{answer}}", "doc_to_choice": "{{options}}", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "dolore-possimus_lsat-lr_base": { "task": "dolore-possimus_lsat-lr_base", "group": "logikon-bench", "dataset_path": "logikon/cot-eval-traces", "dataset_kwargs": { "data_files": { "test": "dolore-possimus-lsat-lr/test-00000-of-00001.parquet" } }, "test_split": "test", "doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", "doc_to_target": "{{answer}}", "doc_to_choice": "{{options}}", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "dolore-possimus_lsat-rc_base": { "task": "dolore-possimus_lsat-rc_base", "group": "logikon-bench", "dataset_path": "logikon/cot-eval-traces", "dataset_kwargs": { "data_files": { "test": "dolore-possimus-lsat-rc/test-00000-of-00001.parquet" } }, "test_split": "test", "doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", "doc_to_target": "{{answer}}", "doc_to_choice": "{{options}}", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "laboriosam-numquam_logiqa2_base": { "task": "laboriosam-numquam_logiqa2_base", "group": "logikon-bench", "dataset_path": "logikon/cot-eval-traces", "dataset_kwargs": { "data_files": { "test": "laboriosam-numquam-logiqa2/test-00000-of-00001.parquet" } }, "test_split": "test", "doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", "doc_to_target": "{{answer}}", "doc_to_choice": "{{options}}", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "laboriosam-numquam_logiqa_base": { "task": "laboriosam-numquam_logiqa_base", "group": "logikon-bench", "dataset_path": "logikon/cot-eval-traces", "dataset_kwargs": { "data_files": { "test": "laboriosam-numquam-logiqa/test-00000-of-00001.parquet" } }, "test_split": "test", "doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", "doc_to_target": "{{answer}}", "doc_to_choice": "{{options}}", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "laboriosam-numquam_lsat-ar_base": { "task": "laboriosam-numquam_lsat-ar_base", "group": "logikon-bench", "dataset_path": "logikon/cot-eval-traces", "dataset_kwargs": { "data_files": { "test": "laboriosam-numquam-lsat-ar/test-00000-of-00001.parquet" } }, "test_split": "test", "doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", "doc_to_target": "{{answer}}", "doc_to_choice": "{{options}}", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "laboriosam-numquam_lsat-lr_base": { "task": "laboriosam-numquam_lsat-lr_base", "group": "logikon-bench", "dataset_path": "logikon/cot-eval-traces", "dataset_kwargs": { "data_files": { "test": "laboriosam-numquam-lsat-lr/test-00000-of-00001.parquet" } }, "test_split": "test", "doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", "doc_to_target": "{{answer}}", "doc_to_choice": "{{options}}", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "laboriosam-numquam_lsat-rc_base": { "task": "laboriosam-numquam_lsat-rc_base", "group": "logikon-bench", "dataset_path": "logikon/cot-eval-traces", "dataset_kwargs": { "data_files": { "test": "laboriosam-numquam-lsat-rc/test-00000-of-00001.parquet" } }, "test_split": "test", "doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", "doc_to_target": "{{answer}}", "doc_to_choice": "{{options}}", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "magni-excepturi_logiqa2_base": { "task": "magni-excepturi_logiqa2_base", "group": "logikon-bench", "dataset_path": "logikon/cot-eval-traces", "dataset_kwargs": { "data_files": { "test": "magni-excepturi-logiqa2/test-00000-of-00001.parquet" } }, "test_split": "test", "doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", "doc_to_target": "{{answer}}", "doc_to_choice": "{{options}}", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "magni-excepturi_logiqa_base": { "task": "magni-excepturi_logiqa_base", "group": "logikon-bench", "dataset_path": "logikon/cot-eval-traces", "dataset_kwargs": { "data_files": { "test": "magni-excepturi-logiqa/test-00000-of-00001.parquet" } }, "test_split": "test", "doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", "doc_to_target": "{{answer}}", "doc_to_choice": "{{options}}", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "magni-excepturi_lsat-ar_base": { "task": "magni-excepturi_lsat-ar_base", "group": "logikon-bench", "dataset_path": "logikon/cot-eval-traces", "dataset_kwargs": { "data_files": { "test": "magni-excepturi-lsat-ar/test-00000-of-00001.parquet" } }, "test_split": "test", "doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", "doc_to_target": "{{answer}}", "doc_to_choice": "{{options}}", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "magni-excepturi_lsat-lr_base": { "task": "magni-excepturi_lsat-lr_base", "group": "logikon-bench", "dataset_path": "logikon/cot-eval-traces", "dataset_kwargs": { "data_files": { "test": "magni-excepturi-lsat-lr/test-00000-of-00001.parquet" } }, "test_split": "test", "doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", "doc_to_target": "{{answer}}", "doc_to_choice": "{{options}}", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "magni-excepturi_lsat-rc_base": { "task": "magni-excepturi_lsat-rc_base", "group": "logikon-bench", "dataset_path": "logikon/cot-eval-traces", "dataset_kwargs": { "data_files": { "test": "magni-excepturi-lsat-rc/test-00000-of-00001.parquet" } }, "test_split": "test", "doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", "doc_to_target": "{{answer}}", "doc_to_choice": "{{options}}", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "quo-non_logiqa2_base": { "task": "quo-non_logiqa2_base", "group": "logikon-bench", "dataset_path": "logikon/cot-eval-traces", "dataset_kwargs": { "data_files": { "test": "quo-non-logiqa2/test-00000-of-00001.parquet" } }, "test_split": "test", "doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", "doc_to_target": "{{answer}}", "doc_to_choice": "{{options}}", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "quo-non_logiqa_base": { "task": "quo-non_logiqa_base", "group": "logikon-bench", "dataset_path": "logikon/cot-eval-traces", "dataset_kwargs": { "data_files": { "test": "quo-non-logiqa/test-00000-of-00001.parquet" } }, "test_split": "test", "doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", "doc_to_target": "{{answer}}", "doc_to_choice": "{{options}}", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "quo-non_lsat-ar_base": { "task": "quo-non_lsat-ar_base", "group": "logikon-bench", "dataset_path": "logikon/cot-eval-traces", "dataset_kwargs": { "data_files": { "test": "quo-non-lsat-ar/test-00000-of-00001.parquet" } }, "test_split": "test", "doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", "doc_to_target": "{{answer}}", "doc_to_choice": "{{options}}", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "quo-non_lsat-lr_base": { "task": "quo-non_lsat-lr_base", "group": "logikon-bench", "dataset_path": "logikon/cot-eval-traces", "dataset_kwargs": { "data_files": { "test": "quo-non-lsat-lr/test-00000-of-00001.parquet" } }, "test_split": "test", "doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", "doc_to_target": "{{answer}}", "doc_to_choice": "{{options}}", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "quo-non_lsat-rc_base": { "task": "quo-non_lsat-rc_base", "group": "logikon-bench", "dataset_path": "logikon/cot-eval-traces", "dataset_kwargs": { "data_files": { "test": "quo-non-lsat-rc/test-00000-of-00001.parquet" } }, "test_split": "test", "doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", "doc_to_target": "{{answer}}", "doc_to_choice": "{{options}}", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "temporibus-illo_logiqa2_base": { "task": "temporibus-illo_logiqa2_base", "group": "logikon-bench", "dataset_path": "logikon/cot-eval-traces", "dataset_kwargs": { "data_files": { "test": "temporibus-illo-logiqa2/test-00000-of-00001.parquet" } }, "test_split": "test", "doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", "doc_to_target": "{{answer}}", "doc_to_choice": "{{options}}", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "temporibus-illo_logiqa_base": { "task": "temporibus-illo_logiqa_base", "group": "logikon-bench", "dataset_path": "logikon/cot-eval-traces", "dataset_kwargs": { "data_files": { "test": "temporibus-illo-logiqa/test-00000-of-00001.parquet" } }, "test_split": "test", "doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", "doc_to_target": "{{answer}}", "doc_to_choice": "{{options}}", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "temporibus-illo_lsat-ar_base": { "task": "temporibus-illo_lsat-ar_base", "group": "logikon-bench", "dataset_path": "logikon/cot-eval-traces", "dataset_kwargs": { "data_files": { "test": "temporibus-illo-lsat-ar/test-00000-of-00001.parquet" } }, "test_split": "test", "doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", "doc_to_target": "{{answer}}", "doc_to_choice": "{{options}}", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "temporibus-illo_lsat-lr_base": { "task": "temporibus-illo_lsat-lr_base", "group": "logikon-bench", "dataset_path": "logikon/cot-eval-traces", "dataset_kwargs": { "data_files": { "test": "temporibus-illo-lsat-lr/test-00000-of-00001.parquet" } }, "test_split": "test", "doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", "doc_to_target": "{{answer}}", "doc_to_choice": "{{options}}", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "temporibus-illo_lsat-rc_base": { "task": "temporibus-illo_lsat-rc_base", "group": "logikon-bench", "dataset_path": "logikon/cot-eval-traces", "dataset_kwargs": { "data_files": { "test": "temporibus-illo-lsat-rc/test-00000-of-00001.parquet" } }, "test_split": "test", "doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", "doc_to_target": "{{answer}}", "doc_to_choice": "{{options}}", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "unde-laudantium_logiqa2_base": { "task": "unde-laudantium_logiqa2_base", "group": "logikon-bench", "dataset_path": "logikon/cot-eval-traces", "dataset_kwargs": { "data_files": { "test": "unde-laudantium-logiqa2/test-00000-of-00001.parquet" } }, "test_split": "test", "doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", "doc_to_target": "{{answer}}", "doc_to_choice": "{{options}}", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "unde-laudantium_logiqa_base": { "task": "unde-laudantium_logiqa_base", "group": "logikon-bench", "dataset_path": "logikon/cot-eval-traces", "dataset_kwargs": { "data_files": { "test": "unde-laudantium-logiqa/test-00000-of-00001.parquet" } }, "test_split": "test", "doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", "doc_to_target": "{{answer}}", "doc_to_choice": "{{options}}", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "unde-laudantium_lsat-ar_base": { "task": "unde-laudantium_lsat-ar_base", "group": "logikon-bench", "dataset_path": "logikon/cot-eval-traces", "dataset_kwargs": { "data_files": { "test": "unde-laudantium-lsat-ar/test-00000-of-00001.parquet" } }, "test_split": "test", "doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", "doc_to_target": "{{answer}}", "doc_to_choice": "{{options}}", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "unde-laudantium_lsat-lr_base": { "task": "unde-laudantium_lsat-lr_base", "group": "logikon-bench", "dataset_path": "logikon/cot-eval-traces", "dataset_kwargs": { "data_files": { "test": "unde-laudantium-lsat-lr/test-00000-of-00001.parquet" } }, "test_split": "test", "doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", "doc_to_target": "{{answer}}", "doc_to_choice": "{{options}}", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "unde-laudantium_lsat-rc_base": { "task": "unde-laudantium_lsat-rc_base", "group": "logikon-bench", "dataset_path": "logikon/cot-eval-traces", "dataset_kwargs": { "data_files": { "test": "unde-laudantium-lsat-rc/test-00000-of-00001.parquet" } }, "test_split": "test", "doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", "doc_to_target": "{{answer}}", "doc_to_choice": "{{options}}", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } } }, "versions": { "dolore-possimus_logiqa2_base": 0.0, "dolore-possimus_logiqa_base": 0.0, "dolore-possimus_lsat-ar_base": 0.0, "dolore-possimus_lsat-lr_base": 0.0, "dolore-possimus_lsat-rc_base": 0.0, "laboriosam-numquam_logiqa2_base": 0.0, "laboriosam-numquam_logiqa_base": 0.0, "laboriosam-numquam_lsat-ar_base": 0.0, "laboriosam-numquam_lsat-lr_base": 0.0, "laboriosam-numquam_lsat-rc_base": 0.0, "magni-excepturi_logiqa2_base": 0.0, "magni-excepturi_logiqa_base": 0.0, "magni-excepturi_lsat-ar_base": 0.0, "magni-excepturi_lsat-lr_base": 0.0, "magni-excepturi_lsat-rc_base": 0.0, "quo-non_logiqa2_base": 0.0, "quo-non_logiqa_base": 0.0, "quo-non_lsat-ar_base": 0.0, "quo-non_lsat-lr_base": 0.0, "quo-non_lsat-rc_base": 0.0, "temporibus-illo_logiqa2_base": 0.0, "temporibus-illo_logiqa_base": 0.0, "temporibus-illo_lsat-ar_base": 0.0, "temporibus-illo_lsat-lr_base": 0.0, "temporibus-illo_lsat-rc_base": 0.0, "unde-laudantium_logiqa2_base": 0.0, "unde-laudantium_logiqa_base": 0.0, "unde-laudantium_lsat-ar_base": 0.0, "unde-laudantium_lsat-lr_base": 0.0, "unde-laudantium_lsat-rc_base": 0.0 }, "n-shot": { "dolore-possimus_logiqa2_base": 0, "dolore-possimus_logiqa_base": 0, "dolore-possimus_lsat-ar_base": 0, "dolore-possimus_lsat-lr_base": 0, "dolore-possimus_lsat-rc_base": 0, "laboriosam-numquam_logiqa2_base": 0, "laboriosam-numquam_logiqa_base": 0, "laboriosam-numquam_lsat-ar_base": 0, "laboriosam-numquam_lsat-lr_base": 0, "laboriosam-numquam_lsat-rc_base": 0, "magni-excepturi_logiqa2_base": 0, "magni-excepturi_logiqa_base": 0, "magni-excepturi_lsat-ar_base": 0, "magni-excepturi_lsat-lr_base": 0, "magni-excepturi_lsat-rc_base": 0, "quo-non_logiqa2_base": 0, "quo-non_logiqa_base": 0, "quo-non_lsat-ar_base": 0, "quo-non_lsat-lr_base": 0, "quo-non_lsat-rc_base": 0, "temporibus-illo_logiqa2_base": 0, "temporibus-illo_logiqa_base": 0, "temporibus-illo_lsat-ar_base": 0, "temporibus-illo_lsat-lr_base": 0, "temporibus-illo_lsat-rc_base": 0, "unde-laudantium_logiqa2_base": 0, "unde-laudantium_logiqa_base": 0, "unde-laudantium_lsat-ar_base": 0, "unde-laudantium_lsat-lr_base": 0, "unde-laudantium_lsat-rc_base": 0 }, "config": { "model": "vllm", "model_args": "pretrained=mistralai/Mistral-7B-v0.1,revision=main,dtype=auto,tensor_parallel_size=1,gpu_memory_utilization=0.9,trust_remote_code=true,max_length=4096", "batch_size": "auto", "batch_sizes": [], "device": null, "use_cache": null, "limit": null, "bootstrap_iters": 100000, "gen_kwargs": null }, "git_hash": "5044cf9" }