mmarco-train / mmarco-train.py
crystina-z's picture
random 10 + skip unfound
bf3af95
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""mMARCO dataset."""
from collections import defaultdict
from gc import collect
import datasets
from tqdm import tqdm
import random
_CITATION = """
@misc{bonifacio2021mmarco,
title={mMARCO: A Multilingual Version of the MS MARCO Passage Ranking Dataset},
author={Luiz Henrique Bonifacio and Israel Campiotti and Vitor Jeronymo and Hugo Queiroz Abonizio and Roberto Lotufo and Rodrigo Nogueira},
year={2021},
eprint={2108.13897},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
"""
_URL = "https://github.com/unicamp-dl/mMARCO"
_DESCRIPTION = """
mMARCO translated datasets
"""
_BASE_URLS = {
"collections": "https://huggingface.co/datasets/unicamp-dl/mmarco/resolve/main/data/google/collections/",
"queries-train": "https://huggingface.co/datasets/unicamp-dl/mmarco/resolve/main/data/google/queries/train/",
"queries-dev": "https://huggingface.co/datasets/unicamp-dl/mmarco/resolve/main/data/google/queries/dev/",
"runs": "https://huggingface.co/datasets/unicamp-dl/mmarco/resolve/main/data/google/runs/",
"train": "https://huggingface.co/datasets/unicamp-dl/mmarco/resolve/main/data/triples.train.ids.small.tsv",
}
LANGUAGES = [
"arabic",
"chinese",
"dutch",
"english",
"french",
"german",
"hindi",
"indonesian",
"italian",
"japanese",
"portuguese",
"russian",
"spanish",
"vietnamese",
]
class MMarco(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = (
[
datasets.BuilderConfig(
name=language,
description=f"{language.capitalize()} triples",
version=datasets.Version("2.0.0"),
)
for language in LANGUAGES
]
+ [
datasets.BuilderConfig(
name=f"collection-{language}",
description=f"{language.capitalize()} collection version v2",
version=datasets.Version("2.0.0"),
)
for language in LANGUAGES
]
+ [
datasets.BuilderConfig(
name=f"queries-{language}",
description=f"{language.capitalize()} queries version v2",
version=datasets.Version("2.0.0"),
)
for language in LANGUAGES
]
+ [
datasets.BuilderConfig(
name=f"runs-{language}",
description=f"{language.capitalize()} runs version v2",
version=datasets.Version("2.0.0"),
)
for language in LANGUAGES
]
+ [
datasets.BuilderConfig(
name=f"all",
description=f"All training data version v2",
version=datasets.Version("2.0.0"),
)
]
)
size_per_lang = {lang: 398792 for lang in LANGUAGES}
# $ cat triples.train.ids.small.tsv | cut -f 1 | sort | uniq | wc -l
# 398792
DEFAULT_CONFIG_NAME = "english"
def _info(self):
name = self.config.name
assert name in LANGUAGES + ["all"], f"Does not support languge {name}. Must be one of {LANGUAGES}."
features = {
"query_id": datasets.Value("string"),
"query": datasets.Value("string"),
"positive_passages": [
{'docid': datasets.Value('string'), 'text': datasets.Value('string')}
],
"negative_passages": [
{'docid': datasets.Value('string'), 'text': datasets.Value('string')}
],
}
return datasets.DatasetInfo(
description=f"{_DESCRIPTION}\n{self.config.description}",
features=datasets.Features(features),
supervised_keys=None,
homepage=_URL,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
languages = [self.config.name] if self.config.name in LANGUAGES else LANGUAGES
urls = {
"collection": {lang: _BASE_URLS["collections"] + lang + "_collection.tsv" for lang in languages},
"queries": {lang: _BASE_URLS["queries-train"] + lang + "_queries.train.tsv" for lang in languages},
"train": _BASE_URLS["train"],
}
dl_path = dl_manager.download_and_extract(urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"files": dl_path["train"],
"args": {
"collection": dl_path["collection"],
"queries": dl_path["queries"],
},
},
)
]
def _generate_examples(self, files, args=None):
"""Yields examples."""
languages = [self.config.name] if self.config.name in LANGUAGES else LANGUAGES
# loading
runs = dict() # each query: [set(pos_passages), set(neg_passages)]
with open(files, encoding="utf-8") as f:
for (idx, line) in enumerate(f):
query_id, pos_id, neg_id = line.rstrip().split("\t")
if query_id not in runs:
runs[query_id] = [set(pos_id), set(neg_id)]
else:
runs[query_id][0].add(pos_id)
runs[query_id][1].add(neg_id)
# it would generate language by language so that it would be easier to constrain that each batch only contain one language;
for lang in tqdm(languages, desc=f"Preparing training example for {len(languages)} languages."):
n_missed_q = 0
n_missed_d = 0
collection_path, queries_path = args["collection"][lang], args["queries"][lang]
collection = {}
with open(collection_path, encoding="utf-8") as f:
collection = dict(line.rstrip().split("\t") for line in f)
queries = {}
with open(queries_path, encoding="utf-8") as f:
for line in f:
queries = dict(line.rstrip().split("\t") for line in f)
assert len(runs) == self.size_per_lang[lang]
for query_id, (pos_ids, neg_ids) in runs.items():
if query_id not in queries:
n_missed_q += 1
continue
pos_ids, neg_ids = list(pos_ids), list(neg_ids)
pos_ids = [d for d in pos_ids if d in collection]
neg_ids = [d for d in neg_ids if d in collection]
if len(neg_ids) == 0 or len(pos_ids) == 0:
n_missed_d += 1
continue
NNEG = min(10, len(neg_ids))
neg_ids = random.choices(neg_ids, k=NNEG)
features = {
"query_id": query_id,
"query": queries[query_id],
"positive_passages": [{
"docid": pos_id,
"text": collection[pos_id],
} for pos_id in pos_ids],
"negative_passages": [{
"docid": neg_id,
"text": collection[neg_id],
} for neg_id in neg_ids],
}
yield f"{lang}-{query_id}-{idx}", features
print(f'Number of missed Q: {n_missed_q}. Number of missed D: {n_missed_d}')