import os from tqdm import tqdm import json import os import openai from tqdm import tqdm import argparse import multiprocessing from copy import deepcopy from functools import partial prompt_library = { "MCQ": "In this problem, only one option will be correct. Give a detailed solution and end the solution with the final answer.", "MCQ(multiple)": "In this problem, multiple options can be correct. Give a detailed solution and end the solution with the final answer.", "Integer": "In this problem, the final answer will be a non-negative integer. Give a detailed solution and end the solution with the final answer.", "Numeric": "In this problem, the final will be a numeric value. Give the numerical answer correct upto the 2nd decimal digit. Give a detailed solution and end the solution with the final answer.", } few_shot_examples = json.load(open('data/few_shot_examples.json')) def write_in_file(response_file, response_dict, question, mode, model_nickname): if os.path.exists(response_file): with open(response_file, 'r') as infile: responses = json.load(infile) else: responses = [] found = False for i, old_resp in enumerate(responses): if old_resp['description'] == question['description'] and old_resp['index'] == question['index']: responses[i][f"{model_nickname}_{mode}_response" ] = response_dict[f"{model_nickname}_{mode}_response"] found = True break if not found: responses.append(response_dict) json.dump(sorted(responses, key=lambda elem: (elem['description'], elem['index'])), open(response_file, 'w'), indent=4) print(f"####UPDATED {response_file}, Current size : {len(responses)}####") def get_response(question,model, model_nickname, mode, response_file, lock): response_dict = deepcopy(question) prefix_prompt = prompt_library[question['type']] suffix_prompt = "" if mode in ['CoT', 'CoT+SC', 'CoT+Exam'] : suffix_prompt = "Let's think step by step.\n" ques = question["question"] stripped_ques = ques.replace("\n\n", "\n").strip() if mode in ['CoT+OneShot', 'CoT', 'CoT+SC', 'CoT+Exam']: if mode == 'CoT+Exam': if response_dict['type'] in ['MCQ', 'MCQ(multiple)']: if response_dict['type'] == 'MCQ': exam_prompt = "If the answer is wrong, you'll be given -1 marks. If the answer is correct, you'll be given +3 marks. If you're unsure of the answer, you can skip the question, and you'll be given 0 marks." else: exam_prompt = "If any of the options in the final answer is wrong, you'll be given -2 marks. If all the options are correct, you'll be given +4 marks. If some of the options are correct, you'll be given +1 for each correct option. If you're unsure of the answer, you can skip the question, and you'll be given 0 marks." prompt = prefix_prompt + " " + exam_prompt + "\n\n" + "Problem: " + stripped_ques + "\nSolution: " + suffix_prompt else: print("No point doing this for Numeric/Integer questions since there is no negative marking...") breakpoint() else: if mode == 'CoT+OneShot': ex = few_shot_examples[question['subject']][question['type']] prompt = prefix_prompt + "\n\n" + "Problem: " + ex['problem'] + "\nSolution: " + ex['solution'] + "\n\n" + "Problem: " + stripped_ques + "\nSolution: " else: prompt = prefix_prompt + "\n\n" + "Problem: " + stripped_ques + "\nSolution: " + suffix_prompt else: prompt = prefix_prompt + "\n\n" + "Problem: " + stripped_ques + suffix_prompt prompt = prompt.strip() response_dict[f"prompt"] = prompt num_retries = 0 print(f'Question: {question["description"]}, Index: {question["index"]}, Model: {model_nickname}, Mode: {mode}, query begins') while True: try: if model in ["text-davinci-003", "text-davinci-002", 'davinci-002']: response = openai.Completion.create( model=model, prompt=prompt, max_tokens=2048, temperature=0 if mode in ['CoT', 'normal', 'CoT+Exam'] else 0.5, n=1 if mode in ['CoT', 'normal', 'CoT+Exam'] else 3 ) else: response = openai.ChatCompletion.create( model=model, messages=[ {"role": "system", "content": ""}, {"role": "user", "content": prompt} ], max_tokens=2048, temperature=0 if mode in ['CoT+OneShot', 'CoT', 'normal', 'CoT+Exam'] else 0.5, n=1 if mode in ['CoT+OneShot', 'CoT', 'normal', 'CoT+Exam'] else 8 ) lock.acquire() response_dict[f"{model_nickname}_{mode}_response"] = response write_in_file(response_file, response_dict, question, mode, model_nickname) lock.release() break except Exception as e: num_retries += 1 print("Failure!", e) return def main(): ''' The code can restart from the already done questions in case there is a failure midpoint. ''' args = argparse.ArgumentParser() args.add_argument('--model', default='gpt-3.5-turbo') args.add_argument('--data', default='data/dataset.json') args.add_argument('--mode', default='normal') args.add_argument('--num_procs', default=1, type=int) args.add_argument('--max_questions', default=1, type=int) args = args.parse_args() openai.organization = os.getenv("OPENAI_ORG") openai.api_key = os.getenv("OPENAI_API_KEY") model_nickname = { "davinci-002": "davinci-002", "text-davinci-003": "GPT3", "gpt-3.5-turbo": "GPT3.5", "gpt-4-0613": "GPT4_0613", "gpt-4-0314": "GPT4" } assert args.model in model_nickname.keys() assert args.mode in ['normal', 'CoT', 'CoT+OneShot', 'CoT+Exam', 'CoT+SC'] out_file_dir = f'responses/{model_nickname[args.model]}_{args.mode}_responses' out_file = os.path.join(out_file_dir, 'responses.json') questions = json.load(open(args.data)) rem_ques = [] if os.path.exists(out_file): for question in tqdm(questions[:args.max_questions]): if os.path.exists(out_file): with open(out_file, 'r') as infile: responses = json.load(infile) found = False for i, old_resp in enumerate(responses): if question['type'] in ['Numeric', 'Integer'] and args.mode == 'CoT+Exam': found = True if old_resp['description'] == question['description'] and old_resp['index'] == question['index']: found = all([old_resp.get( f"{model_nickname[args.model]}_{args.mode}_response", False) for model in [args.model]]) if found: print("This question has already been done") else: rem_ques.append(question) else: os.makedirs(out_file_dir, exist_ok=True) if args.mode == 'CoT+Exam': rem_ques = [] for q in questions: if q['type'] in ['MCQ', 'MCQ(multiple)']: rem_ques.append(q) else: rem_ques = questions[:args.max_questions] print(f"There are {len(rem_ques)} problems remaining") manager = multiprocessing.Manager() lock = manager.Lock() pool = multiprocessing.Pool(args.num_procs) f = partial(get_response, model=args.model, model_nickname=model_nickname[args.model], mode=args.mode, response_file=out_file, lock=lock) pool.map(f, rem_ques) if __name__ == '__main__': main()