from pathlib import Path from typing import cast import pandas as pd import spacy from datasets import Dataset, load_dataset # KCE: mail from Leon sample_to_redact = { # Der kommer en dag "opensub_6726481", "opensub_6732371", # Kollektivet "opensub_6645818", # Flaskepost fra P "opensub_6666922", "opensub_6720216", "opensub_6958711", # Fasandræberne "opensub_6036947", "opensub_6008622", # En du elsker "opensub_5828376", "opensub_5828378", # En chance til "opensub_6177523", # Lev stærkt "opensub_6467655", # Nymphomaniac "opensub_5604391", "opensub_5748340", "opensub_5748494", "opensub_5629516", # Kvinden i buret "opensub_5636248", "opensub_5514603", "opensub_5504932", # Den skaldede frisør "opensub_5084880", "opensub_5031826", # Jagten "opensub_6929419", "opensub_4885548", # Melancholia "opensub_4421330", "opensub_4406991", "opensub_4418817", # Ambassadøren "opensub_4557721", # Antichrist "opensub_5511502", "opensub_3938655", "opensub_3636940", "opensub_3564521", "opensub_3562215", # En kongelig affære "opensub_4725493", "opensub_4725160", "opensub_4725159", "opensub_4916871", "opensub_5186746", # Brødre "opensub_233943", "opensub_87475", } column_order = [ "text", "source", "id", "added", "created", "license", "domain", "metadata", ] def convert_sample(example: dict) -> dict: text = example["text"] if example["doc_id"] in sample_to_redact: nlp = spacy.blank("da") doc = nlp(text) text = doc[:200].text # first 200 words new_example = dict( text_new=text, id=example["doc_id"], source="opensubtitles", domain="Conversation", license="Creative Commons Legal Code\n\nCC0 1.0 Universal", added="2025-01-02", created="1920-01-01, 2018-01-01", # assuming v2018 metadata={"source-pretty": "OpenSubtitles"}, ) return new_example def main(): ds = load_dataset("DDSC/partial-danish-gigaword-no-twitter", split="train") ds = cast(Dataset, ds) ds = ds.filter(lambda x: x["source"] == "opensub", num_proc=4) ds = ds.map(convert_sample, num_proc=4) ds = ds.select_columns(column_order[1:] + ["text_new"]) ds = ds.rename_columns({"text_new": "text"}) # ensure order ds = ds.select_columns(column_order) df = ds.to_pandas() df = cast(pd.DataFrame, df) dedup_df = df.drop_duplicates(keep="first", subset=["text"]) print("N. duplicates: ", df.shape[0] - dedup_df.shape[0]) # 2422 ds = ds.select(dedup_df.index) assert len(set(ds["text"])) == len(ds) save_path = Path(__file__).parent / "opensubtitles.parquet" ds.to_parquet(save_path) if __name__ == "__main__": main()