--- dataset_info: features: - name: id dtype: int64 - name: text dtype: string - name: meta struct: - name: warc_headers struct: - name: warc-record-id dtype: string - name: warc-date dtype: string - name: content-type dtype: string - name: content-length dtype: int32 - name: warc-type dtype: string - name: warc-identified-content-language dtype: string - name: warc-refers-to dtype: string - name: warc-target-uri dtype: string - name: warc-block-digest dtype: string - name: identification struct: - name: label dtype: string - name: prob dtype: float32 - name: annotations sequence: string - name: line_identifications list: - name: label dtype: string - name: prob dtype: float32 - name: perplexity_score dtype: float64 - name: text_length dtype: int64 - name: url dtype: string - name: domain dtype: string - name: dup_ratio dtype: float64 - name: pairs sequence: sequence: int64 - name: repetitions sequence: binary - name: included_in_dedup dtype: bool - name: cluster sequence: int64 - name: has_dup_25 dtype: bool splits: - name: train num_bytes: 3188540880787 num_examples: 431992659 download_size: 1732364041898 dataset_size: 3188540880787 --- Use the 25% suffix array to deduplicate the full Oscar, i.e. remove any document which has an at least 100-char span overlapping with the 25% chunk we selected in the previous bullet. This is more permissive and leaves us with 136 million documents or 31% of the original dataset. Also for reasons the explanation of which would probably involve terms like power laws, we still remove most of the most pervasive duplicates - so I'm pretty optimistic about this being useful.