File size: 6,048 Bytes
abb3944 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
from __future__ import print_function
import os
import torch
import torch.optim as optim
import torch.backends.cudnn as cudnn
import argparse
import torch.utils.data as data
from data import WiderFaceDetection, detection_collate, preproc, cfg_mnet, cfg_re50
from layers.modules import MultiBoxLoss
from layers.functions.prior_box import PriorBox
import time
import datetime
import math
from models.retinaface import RetinaFace
parser = argparse.ArgumentParser(description='Retinaface Training')
parser.add_argument('--training_dataset', default='./dataset/widerface/widerface/train/label.txt', help='Training dataset directory')
parser.add_argument('--network', default='mobile0.25', help='Backbone network mobile0.25 or resnet50')
parser.add_argument('--num_workers', default=4, type=int, help='Number of workers used in dataloading')
parser.add_argument('--lr', '--learning-rate', default=1e-3, type=float, help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float, help='momentum')
parser.add_argument('--resume_net', default=None, help='resume net for retraining')
parser.add_argument('--resume_epoch', default=0, type=int, help='resume iter for retraining')
parser.add_argument('--weight_decay', default=5e-4, type=float, help='Weight decay for SGD')
parser.add_argument('--gamma', default=0.1, type=float, help='Gamma update for SGD')
parser.add_argument('--save_folder', default='./weights/', help='Location to save checkpoint models')
args = parser.parse_args()
if not os.path.exists(args.save_folder):
os.mkdir(args.save_folder)
cfg = None
if args.network == "mobile0.25":
cfg = cfg_mnet
elif args.network == "resnet50":
cfg = cfg_re50
rgb_mean = (104, 117, 123) # bgr order
num_classes = 2
img_dim = cfg['image_size']
num_gpu = cfg['ngpu']
batch_size = cfg['batch_size']
max_epoch = cfg['epoch']
gpu_train = cfg['gpu_train']
num_workers = args.num_workers
momentum = args.momentum
weight_decay = args.weight_decay
initial_lr = args.lr
gamma = args.gamma
training_dataset = args.training_dataset
save_folder = args.save_folder
net = RetinaFace(cfg=cfg)
print("Printing net...")
print(net)
if args.resume_net is not None:
print('Loading resume network...')
state_dict = torch.load(args.resume_net)
# create new OrderedDict that does not contain `module.`
from collections import OrderedDict
new_state_dict = OrderedDict()
for k, v in state_dict.items():
head = k[:7]
if head == 'module.':
name = k[7:] # remove `module.`
else:
name = k
new_state_dict[name] = v
net.load_state_dict(new_state_dict)
if num_gpu > 1 and gpu_train:
net = torch.nn.DataParallel(net).cuda()
else:
net = net.cuda()
cudnn.benchmark = True
optimizer = optim.SGD(net.parameters(), lr=initial_lr, momentum=momentum, weight_decay=weight_decay)
criterion = MultiBoxLoss(num_classes, 0.35, True, 0, True, 7, 0.35, False)
priorbox = PriorBox(cfg, image_size=(img_dim, img_dim))
with torch.no_grad():
priors = priorbox.forward()
priors = priors.cuda()
def train():
net.train()
epoch = 0 + args.resume_epoch
print('Loading Dataset...')
dataset = WiderFaceDetection( training_dataset,preproc(img_dim, rgb_mean))
epoch_size = math.ceil(len(dataset) / batch_size)
max_iter = max_epoch * epoch_size
stepvalues = (cfg['decay1'] * epoch_size, cfg['decay2'] * epoch_size)
step_index = 0
if args.resume_epoch > 0:
start_iter = args.resume_epoch * epoch_size
else:
start_iter = 0
for iteration in range(start_iter, max_iter):
if iteration % epoch_size == 0:
# create batch iterator
batch_iterator = iter(data.DataLoader(dataset, batch_size, shuffle=True, num_workers=num_workers, collate_fn=detection_collate))
if (epoch % 10 == 0 and epoch > 0) or (epoch % 5 == 0 and epoch > cfg['decay1']):
torch.save(net.state_dict(), save_folder + cfg['name']+ '_epoch_' + str(epoch) + '.pth')
epoch += 1
load_t0 = time.time()
if iteration in stepvalues:
step_index += 1
lr = adjust_learning_rate(optimizer, gamma, epoch, step_index, iteration, epoch_size)
# load train data
images, targets = next(batch_iterator)
images = images.cuda()
targets = [anno.cuda() for anno in targets]
# forward
out = net(images)
# backprop
optimizer.zero_grad()
loss_l, loss_c, loss_landm = criterion(out, priors, targets)
loss = cfg['loc_weight'] * loss_l + loss_c + loss_landm
loss.backward()
optimizer.step()
load_t1 = time.time()
batch_time = load_t1 - load_t0
eta = int(batch_time * (max_iter - iteration))
print('Epoch:{}/{} || Epochiter: {}/{} || Iter: {}/{} || Loc: {:.4f} Cla: {:.4f} Landm: {:.4f} || LR: {:.8f} || Batchtime: {:.4f} s || ETA: {}'
.format(epoch, max_epoch, (iteration % epoch_size) + 1,
epoch_size, iteration + 1, max_iter, loss_l.item(), loss_c.item(), loss_landm.item(), lr, batch_time, str(datetime.timedelta(seconds=eta))))
torch.save(net.state_dict(), save_folder + cfg['name'] + '_Final.pth')
# torch.save(net.state_dict(), save_folder + 'Final_Retinaface.pth')
def adjust_learning_rate(optimizer, gamma, epoch, step_index, iteration, epoch_size):
"""Sets the learning rate
# Adapted from PyTorch Imagenet example:
# https://github.com/pytorch/examples/blob/master/imagenet/main.py
"""
warmup_epoch = -1
if epoch <= warmup_epoch:
lr = 1e-6 + (initial_lr-1e-6) * iteration / (epoch_size * warmup_epoch)
else:
lr = initial_lr * (gamma ** (step_index))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
return lr
if __name__ == '__main__':
train()
|