File size: 9,320 Bytes
abb3944 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 |
"""
WiderFace evaluation code
author: wondervictor
mail: tianhengcheng@gmail.com
copyright@wondervictor
"""
import os
import tqdm
import pickle
import argparse
import numpy as np
from scipy.io import loadmat
from bbox import bbox_overlaps
from IPython import embed
def get_gt_boxes(gt_dir):
""" gt dir: (wider_face_val.mat, wider_easy_val.mat, wider_medium_val.mat, wider_hard_val.mat)"""
gt_mat = loadmat(os.path.join(gt_dir, 'wider_face_val.mat'))
hard_mat = loadmat(os.path.join(gt_dir, 'wider_hard_val.mat'))
medium_mat = loadmat(os.path.join(gt_dir, 'wider_medium_val.mat'))
easy_mat = loadmat(os.path.join(gt_dir, 'wider_easy_val.mat'))
facebox_list = gt_mat['face_bbx_list']
event_list = gt_mat['event_list']
file_list = gt_mat['file_list']
hard_gt_list = hard_mat['gt_list']
medium_gt_list = medium_mat['gt_list']
easy_gt_list = easy_mat['gt_list']
return facebox_list, event_list, file_list, hard_gt_list, medium_gt_list, easy_gt_list
def get_gt_boxes_from_txt(gt_path, cache_dir):
cache_file = os.path.join(cache_dir, 'gt_cache.pkl')
if os.path.exists(cache_file):
f = open(cache_file, 'rb')
boxes = pickle.load(f)
f.close()
return boxes
f = open(gt_path, 'r')
state = 0
lines = f.readlines()
lines = list(map(lambda x: x.rstrip('\r\n'), lines))
boxes = {}
print(len(lines))
f.close()
current_boxes = []
current_name = None
for line in lines:
if state == 0 and '--' in line:
state = 1
current_name = line
continue
if state == 1:
state = 2
continue
if state == 2 and '--' in line:
state = 1
boxes[current_name] = np.array(current_boxes).astype('float32')
current_name = line
current_boxes = []
continue
if state == 2:
box = [float(x) for x in line.split(' ')[:4]]
current_boxes.append(box)
continue
f = open(cache_file, 'wb')
pickle.dump(boxes, f)
f.close()
return boxes
def read_pred_file(filepath):
with open(filepath, 'r') as f:
lines = f.readlines()
img_file = lines[0].rstrip('\n\r')
lines = lines[2:]
# b = lines[0].rstrip('\r\n').split(' ')[:-1]
# c = float(b)
# a = map(lambda x: [[float(a[0]), float(a[1]), float(a[2]), float(a[3]), float(a[4])] for a in x.rstrip('\r\n').split(' ')], lines)
boxes = []
for line in lines:
line = line.rstrip('\r\n').split(' ')
if line[0] is '':
continue
# a = float(line[4])
boxes.append([float(line[0]), float(line[1]), float(line[2]), float(line[3]), float(line[4])])
boxes = np.array(boxes)
# boxes = np.array(list(map(lambda x: [float(a) for a in x.rstrip('\r\n').split(' ')], lines))).astype('float')
return img_file.split('/')[-1], boxes
def get_preds(pred_dir):
events = os.listdir(pred_dir)
boxes = dict()
pbar = tqdm.tqdm(events)
for event in pbar:
pbar.set_description('Reading Predictions ')
event_dir = os.path.join(pred_dir, event)
event_images = os.listdir(event_dir)
current_event = dict()
for imgtxt in event_images:
imgname, _boxes = read_pred_file(os.path.join(event_dir, imgtxt))
current_event[imgname.rstrip('.jpg')] = _boxes
boxes[event] = current_event
return boxes
def norm_score(pred):
""" norm score
pred {key: [[x1,y1,x2,y2,s]]}
"""
max_score = 0
min_score = 1
for _, k in pred.items():
for _, v in k.items():
if len(v) == 0:
continue
_min = np.min(v[:, -1])
_max = np.max(v[:, -1])
max_score = max(_max, max_score)
min_score = min(_min, min_score)
diff = max_score - min_score
for _, k in pred.items():
for _, v in k.items():
if len(v) == 0:
continue
v[:, -1] = (v[:, -1] - min_score)/diff
def image_eval(pred, gt, ignore, iou_thresh):
""" single image evaluation
pred: Nx5
gt: Nx4
ignore:
"""
_pred = pred.copy()
_gt = gt.copy()
pred_recall = np.zeros(_pred.shape[0])
recall_list = np.zeros(_gt.shape[0])
proposal_list = np.ones(_pred.shape[0])
_pred[:, 2] = _pred[:, 2] + _pred[:, 0]
_pred[:, 3] = _pred[:, 3] + _pred[:, 1]
_gt[:, 2] = _gt[:, 2] + _gt[:, 0]
_gt[:, 3] = _gt[:, 3] + _gt[:, 1]
overlaps = bbox_overlaps(_pred[:, :4], _gt)
for h in range(_pred.shape[0]):
gt_overlap = overlaps[h]
max_overlap, max_idx = gt_overlap.max(), gt_overlap.argmax()
if max_overlap >= iou_thresh:
if ignore[max_idx] == 0:
recall_list[max_idx] = -1
proposal_list[h] = -1
elif recall_list[max_idx] == 0:
recall_list[max_idx] = 1
r_keep_index = np.where(recall_list == 1)[0]
pred_recall[h] = len(r_keep_index)
return pred_recall, proposal_list
def img_pr_info(thresh_num, pred_info, proposal_list, pred_recall):
pr_info = np.zeros((thresh_num, 2)).astype('float')
for t in range(thresh_num):
thresh = 1 - (t+1)/thresh_num
r_index = np.where(pred_info[:, 4] >= thresh)[0]
if len(r_index) == 0:
pr_info[t, 0] = 0
pr_info[t, 1] = 0
else:
r_index = r_index[-1]
p_index = np.where(proposal_list[:r_index+1] == 1)[0]
pr_info[t, 0] = len(p_index)
pr_info[t, 1] = pred_recall[r_index]
return pr_info
def dataset_pr_info(thresh_num, pr_curve, count_face):
_pr_curve = np.zeros((thresh_num, 2))
for i in range(thresh_num):
_pr_curve[i, 0] = pr_curve[i, 1] / pr_curve[i, 0]
_pr_curve[i, 1] = pr_curve[i, 1] / count_face
return _pr_curve
def voc_ap(rec, prec):
# correct AP calculation
# first append sentinel values at the end
mrec = np.concatenate(([0.], rec, [1.]))
mpre = np.concatenate(([0.], prec, [0.]))
# compute the precision envelope
for i in range(mpre.size - 1, 0, -1):
mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i])
# to calculate area under PR curve, look for points
# where X axis (recall) changes value
i = np.where(mrec[1:] != mrec[:-1])[0]
# and sum (\Delta recall) * prec
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])
return ap
def evaluation(pred, gt_path, iou_thresh=0.5):
pred = get_preds(pred)
norm_score(pred)
facebox_list, event_list, file_list, hard_gt_list, medium_gt_list, easy_gt_list = get_gt_boxes(gt_path)
event_num = len(event_list)
thresh_num = 1000
settings = ['easy', 'medium', 'hard']
setting_gts = [easy_gt_list, medium_gt_list, hard_gt_list]
aps = []
for setting_id in range(3):
# different setting
gt_list = setting_gts[setting_id]
count_face = 0
pr_curve = np.zeros((thresh_num, 2)).astype('float')
# [hard, medium, easy]
pbar = tqdm.tqdm(range(event_num))
for i in pbar:
pbar.set_description('Processing {}'.format(settings[setting_id]))
event_name = str(event_list[i][0][0])
img_list = file_list[i][0]
pred_list = pred[event_name]
sub_gt_list = gt_list[i][0]
# img_pr_info_list = np.zeros((len(img_list), thresh_num, 2))
gt_bbx_list = facebox_list[i][0]
for j in range(len(img_list)):
pred_info = pred_list[str(img_list[j][0][0])]
gt_boxes = gt_bbx_list[j][0].astype('float')
keep_index = sub_gt_list[j][0]
count_face += len(keep_index)
if len(gt_boxes) == 0 or len(pred_info) == 0:
continue
ignore = np.zeros(gt_boxes.shape[0])
if len(keep_index) != 0:
ignore[keep_index-1] = 1
pred_recall, proposal_list = image_eval(pred_info, gt_boxes, ignore, iou_thresh)
_img_pr_info = img_pr_info(thresh_num, pred_info, proposal_list, pred_recall)
pr_curve += _img_pr_info
pr_curve = dataset_pr_info(thresh_num, pr_curve, count_face)
propose = pr_curve[:, 0]
recall = pr_curve[:, 1]
ap = voc_ap(recall, propose)
aps.append(ap)
print("==================== Results ====================")
print("Easy Val AP: {}".format(aps[0]))
print("Medium Val AP: {}".format(aps[1]))
print("Hard Val AP: {}".format(aps[2]))
print("=================================================")
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-p', '--pred', default="./widerface_txt/")
parser.add_argument('-g', '--gt', default='./ground_truth/')
args = parser.parse_args()
evaluation(args.pred, args.gt)
|