File size: 9,420 Bytes
ee28498
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
from __future__ import print_function
import os
import argparse
import torch
import torch.backends.cudnn as cudnn
import numpy as np
from data import cfg_mnet, cfg_re50
from layers.functions.prior_box import PriorBox
from utils.nms.py_cpu_nms import py_cpu_nms
import cv2
from models.retinaface import RetinaFace
from utils.box_utils import decode, decode_landm
from utils.timer import Timer


parser = argparse.ArgumentParser(description='Retinaface')
parser.add_argument('-m', '--trained_model', default='./weights/Resnet50_Final.pth',
                    type=str, help='Trained state_dict file path to open')
parser.add_argument('--network', default='resnet50', help='Backbone network mobile0.25 or resnet50')
parser.add_argument('--origin_size', default=True, type=str, help='Whether use origin image size to evaluate')
parser.add_argument('--save_folder', default='./widerface_evaluate/widerface_txt/', type=str, help='Dir to save txt results')
parser.add_argument('--cpu', action="store_true", default=False, help='Use cpu inference')
parser.add_argument('--dataset_folder', default='./data/widerface/val/images/', type=str, help='dataset path')
parser.add_argument('--confidence_threshold', default=0.02, type=float, help='confidence_threshold')
parser.add_argument('--top_k', default=5000, type=int, help='top_k')
parser.add_argument('--nms_threshold', default=0.4, type=float, help='nms_threshold')
parser.add_argument('--keep_top_k', default=750, type=int, help='keep_top_k')
parser.add_argument('-s', '--save_image', action="store_true", default=False, help='show detection results')
parser.add_argument('--vis_thres', default=0.5, type=float, help='visualization_threshold')
args = parser.parse_args()


def check_keys(model, pretrained_state_dict):
    ckpt_keys = set(pretrained_state_dict.keys())
    model_keys = set(model.state_dict().keys())
    used_pretrained_keys = model_keys & ckpt_keys
    unused_pretrained_keys = ckpt_keys - model_keys
    missing_keys = model_keys - ckpt_keys
    print('Missing keys:{}'.format(len(missing_keys)))
    print('Unused checkpoint keys:{}'.format(len(unused_pretrained_keys)))
    print('Used keys:{}'.format(len(used_pretrained_keys)))
    assert len(used_pretrained_keys) > 0, 'load NONE from pretrained checkpoint'
    return True


def remove_prefix(state_dict, prefix):
    ''' Old style model is stored with all names of parameters sharing common prefix 'module.' '''
    print('remove prefix \'{}\''.format(prefix))
    f = lambda x: x.split(prefix, 1)[-1] if x.startswith(prefix) else x
    return {f(key): value for key, value in state_dict.items()}


def load_model(model, pretrained_path, load_to_cpu):
    print('Loading pretrained model from {}'.format(pretrained_path))
    if load_to_cpu:
        pretrained_dict = torch.load(pretrained_path, map_location=lambda storage, loc: storage)
    else:
        device = torch.cuda.current_device()
        pretrained_dict = torch.load(pretrained_path, map_location=lambda storage, loc: storage.cuda(device))
    if "state_dict" in pretrained_dict.keys():
        pretrained_dict = remove_prefix(pretrained_dict['state_dict'], 'module.')
    else:
        pretrained_dict = remove_prefix(pretrained_dict, 'module.')
    check_keys(model, pretrained_dict)
    model.load_state_dict(pretrained_dict, strict=False)
    return model


if __name__ == '__main__':
    torch.set_grad_enabled(False)

    cfg = None
    if args.network == "mobile0.25":
        cfg = cfg_mnet
    elif args.network == "resnet50":
        cfg = cfg_re50
    # net and model
    net = RetinaFace(cfg=cfg, phase = 'test')
    net = load_model(net, args.trained_model, args.cpu)
    net.eval()
    print('Finished loading model!')
    print(net)
    cudnn.benchmark = True
    device = torch.device("cpu" if args.cpu else "cuda")
    net = net.to(device)

    # testing dataset
    testset_folder = args.dataset_folder
    testset_list = args.dataset_folder[:-7] + "wider_val.txt"

    with open(testset_list, 'r') as fr:
        test_dataset = fr.read().split()
    num_images = len(test_dataset)

    _t = {'forward_pass': Timer(), 'misc': Timer()}

    # testing begin
    for i, img_name in enumerate(test_dataset):
        image_path = testset_folder + img_name
        img_raw = cv2.imread(image_path, cv2.IMREAD_COLOR)
        img = np.float32(img_raw)

        # testing scale
        target_size = 1600
        max_size = 2150
        im_shape = img.shape
        im_size_min = np.min(im_shape[0:2])
        im_size_max = np.max(im_shape[0:2])
        resize = float(target_size) / float(im_size_min)
        # prevent bigger axis from being more than max_size:
        if np.round(resize * im_size_max) > max_size:
            resize = float(max_size) / float(im_size_max)
        if args.origin_size:
            resize = 1

        if resize != 1:
            img = cv2.resize(img, None, None, fx=resize, fy=resize, interpolation=cv2.INTER_LINEAR)
        im_height, im_width, _ = img.shape
        scale = torch.Tensor([img.shape[1], img.shape[0], img.shape[1], img.shape[0]])
        img -= (104, 117, 123)
        img = img.transpose(2, 0, 1)
        img = torch.from_numpy(img).unsqueeze(0)
        img = img.to(device)
        scale = scale.to(device)

        _t['forward_pass'].tic()
        loc, conf, landms = net(img)  # forward pass
        _t['forward_pass'].toc()
        _t['misc'].tic()
        priorbox = PriorBox(cfg, image_size=(im_height, im_width))
        priors = priorbox.forward()
        priors = priors.to(device)
        prior_data = priors.data
        boxes = decode(loc.data.squeeze(0), prior_data, cfg['variance'])
        boxes = boxes * scale / resize
        boxes = boxes.cpu().numpy()
        scores = conf.squeeze(0).data.cpu().numpy()[:, 1]
        landms = decode_landm(landms.data.squeeze(0), prior_data, cfg['variance'])
        scale1 = torch.Tensor([img.shape[3], img.shape[2], img.shape[3], img.shape[2],
                               img.shape[3], img.shape[2], img.shape[3], img.shape[2],
                               img.shape[3], img.shape[2]])
        scale1 = scale1.to(device)
        landms = landms * scale1 / resize
        landms = landms.cpu().numpy()

        # ignore low scores
        inds = np.where(scores > args.confidence_threshold)[0]
        boxes = boxes[inds]
        landms = landms[inds]
        scores = scores[inds]

        # keep top-K before NMS
        order = scores.argsort()[::-1]
        # order = scores.argsort()[::-1][:args.top_k]
        boxes = boxes[order]
        landms = landms[order]
        scores = scores[order]

        # do NMS
        dets = np.hstack((boxes, scores[:, np.newaxis])).astype(np.float32, copy=False)
        keep = py_cpu_nms(dets, args.nms_threshold)
        # keep = nms(dets, args.nms_threshold,force_cpu=args.cpu)
        dets = dets[keep, :]
        landms = landms[keep]

        # keep top-K faster NMS
        # dets = dets[:args.keep_top_k, :]
        # landms = landms[:args.keep_top_k, :]

        dets = np.concatenate((dets, landms), axis=1)
        _t['misc'].toc()

        # --------------------------------------------------------------------
        save_name = args.save_folder + img_name[:-4] + ".txt"
        dirname = os.path.dirname(save_name)
        if not os.path.isdir(dirname):
            os.makedirs(dirname)
        with open(save_name, "w") as fd:
            bboxs = dets
            file_name = os.path.basename(save_name)[:-4] + "\n"
            bboxs_num = str(len(bboxs)) + "\n"
            fd.write(file_name)
            fd.write(bboxs_num)
            for box in bboxs:
                x = int(box[0])
                y = int(box[1])
                w = int(box[2]) - int(box[0])
                h = int(box[3]) - int(box[1])
                confidence = str(box[4])
                line = str(x) + " " + str(y) + " " + str(w) + " " + str(h) + " " + confidence + " \n"
                fd.write(line)

        print('im_detect: {:d}/{:d} forward_pass_time: {:.4f}s misc: {:.4f}s'.format(i + 1, num_images, _t['forward_pass'].average_time, _t['misc'].average_time))

        # save image
        if args.save_image:
            for b in dets:
                if b[4] < args.vis_thres:
                    continue
                text = "{:.4f}".format(b[4])
                b = list(map(int, b))
                cv2.rectangle(img_raw, (b[0], b[1]), (b[2], b[3]), (0, 0, 255), 2)
                cx = b[0]
                cy = b[1] + 12
                cv2.putText(img_raw, text, (cx, cy),
                            cv2.FONT_HERSHEY_DUPLEX, 0.5, (255, 255, 255))

                # landms
                cv2.circle(img_raw, (b[5], b[6]), 1, (0, 0, 255), 4)
                cv2.circle(img_raw, (b[7], b[8]), 1, (0, 255, 255), 4)
                cv2.circle(img_raw, (b[9], b[10]), 1, (255, 0, 255), 4)
                cv2.circle(img_raw, (b[11], b[12]), 1, (0, 255, 0), 4)
                cv2.circle(img_raw, (b[13], b[14]), 1, (255, 0, 0), 4)
            # save image
            if not os.path.exists("./results/"):
                os.makedirs("./results/")
            name = "./results/" + str(i) + ".jpg"
            cv2.imwrite(name, img_raw)