File size: 6,048 Bytes
ee28498
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
from __future__ import print_function
import os
import torch
import torch.optim as optim
import torch.backends.cudnn as cudnn
import argparse
import torch.utils.data as data
from data import WiderFaceDetection, detection_collate, preproc, cfg_mnet, cfg_re50
from layers.modules import MultiBoxLoss
from layers.functions.prior_box import PriorBox
import time
import datetime
import math
from models.retinaface import RetinaFace

parser = argparse.ArgumentParser(description='Retinaface Training')
parser.add_argument('--training_dataset', default='./dataset/widerface/widerface/train/label.txt', help='Training dataset directory')
parser.add_argument('--network', default='mobile0.25', help='Backbone network mobile0.25 or resnet50')
parser.add_argument('--num_workers', default=4, type=int, help='Number of workers used in dataloading')
parser.add_argument('--lr', '--learning-rate', default=1e-3, type=float, help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float, help='momentum')
parser.add_argument('--resume_net', default=None, help='resume net for retraining')
parser.add_argument('--resume_epoch', default=0, type=int, help='resume iter for retraining')
parser.add_argument('--weight_decay', default=5e-4, type=float, help='Weight decay for SGD')
parser.add_argument('--gamma', default=0.1, type=float, help='Gamma update for SGD')
parser.add_argument('--save_folder', default='./weights/', help='Location to save checkpoint models')

args = parser.parse_args()

if not os.path.exists(args.save_folder):
    os.mkdir(args.save_folder)
cfg = None
if args.network == "mobile0.25":
    cfg = cfg_mnet
elif args.network == "resnet50":
    cfg = cfg_re50

rgb_mean = (104, 117, 123) # bgr order
num_classes = 2
img_dim = cfg['image_size']
num_gpu = cfg['ngpu']
batch_size = cfg['batch_size']
max_epoch = cfg['epoch']
gpu_train = cfg['gpu_train']

num_workers = args.num_workers
momentum = args.momentum
weight_decay = args.weight_decay
initial_lr = args.lr
gamma = args.gamma
training_dataset = args.training_dataset
save_folder = args.save_folder

net = RetinaFace(cfg=cfg)
print("Printing net...")
print(net)

if args.resume_net is not None:
    print('Loading resume network...')
    state_dict = torch.load(args.resume_net)
    # create new OrderedDict that does not contain `module.`
    from collections import OrderedDict
    new_state_dict = OrderedDict()
    for k, v in state_dict.items():
        head = k[:7]
        if head == 'module.':
            name = k[7:] # remove `module.`
        else:
            name = k
        new_state_dict[name] = v
    net.load_state_dict(new_state_dict)

if num_gpu > 1 and gpu_train:
    net = torch.nn.DataParallel(net).cuda()
else:
    net = net.cuda()

cudnn.benchmark = True


optimizer = optim.SGD(net.parameters(), lr=initial_lr, momentum=momentum, weight_decay=weight_decay)
criterion = MultiBoxLoss(num_classes, 0.35, True, 0, True, 7, 0.35, False)

priorbox = PriorBox(cfg, image_size=(img_dim, img_dim))
with torch.no_grad():
    priors = priorbox.forward()
    priors = priors.cuda()

def train():
    net.train()
    epoch = 0 + args.resume_epoch
    print('Loading Dataset...')

    dataset = WiderFaceDetection( training_dataset,preproc(img_dim, rgb_mean))

    epoch_size = math.ceil(len(dataset) / batch_size)
    max_iter = max_epoch * epoch_size

    stepvalues = (cfg['decay1'] * epoch_size, cfg['decay2'] * epoch_size)
    step_index = 0

    if args.resume_epoch > 0:
        start_iter = args.resume_epoch * epoch_size
    else:
        start_iter = 0

    for iteration in range(start_iter, max_iter):
        if iteration % epoch_size == 0:
            # create batch iterator
            batch_iterator = iter(data.DataLoader(dataset, batch_size, shuffle=True, num_workers=num_workers, collate_fn=detection_collate))
            if (epoch % 10 == 0 and epoch > 0) or (epoch % 5 == 0 and epoch > cfg['decay1']):
                torch.save(net.state_dict(), save_folder + cfg['name']+ '_epoch_' + str(epoch) + '.pth')
            epoch += 1

        load_t0 = time.time()
        if iteration in stepvalues:
            step_index += 1
        lr = adjust_learning_rate(optimizer, gamma, epoch, step_index, iteration, epoch_size)

        # load train data
        images, targets = next(batch_iterator)
        images = images.cuda()
        targets = [anno.cuda() for anno in targets]

        # forward
        out = net(images)

        # backprop
        optimizer.zero_grad()
        loss_l, loss_c, loss_landm = criterion(out, priors, targets)
        loss = cfg['loc_weight'] * loss_l + loss_c + loss_landm
        loss.backward()
        optimizer.step()
        load_t1 = time.time()
        batch_time = load_t1 - load_t0
        eta = int(batch_time * (max_iter - iteration))
        print('Epoch:{}/{} || Epochiter: {}/{} || Iter: {}/{} || Loc: {:.4f} Cla: {:.4f} Landm: {:.4f} || LR: {:.8f} || Batchtime: {:.4f} s || ETA: {}'
              .format(epoch, max_epoch, (iteration % epoch_size) + 1,
              epoch_size, iteration + 1, max_iter, loss_l.item(), loss_c.item(), loss_landm.item(), lr, batch_time, str(datetime.timedelta(seconds=eta))))

    torch.save(net.state_dict(), save_folder + cfg['name'] + '_Final.pth')
    # torch.save(net.state_dict(), save_folder + 'Final_Retinaface.pth')


def adjust_learning_rate(optimizer, gamma, epoch, step_index, iteration, epoch_size):
    """Sets the learning rate

    # Adapted from PyTorch Imagenet example:

    # https://github.com/pytorch/examples/blob/master/imagenet/main.py

    """
    warmup_epoch = -1
    if epoch <= warmup_epoch:
        lr = 1e-6 + (initial_lr-1e-6) * iteration / (epoch_size * warmup_epoch)
    else:
        lr = initial_lr * (gamma ** (step_index))
    for param_group in optimizer.param_groups:
        param_group['lr'] = lr
    return lr

if __name__ == '__main__':
    train()