File size: 9,320 Bytes
ee28498
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
"""

WiderFace evaluation code

author: wondervictor

mail: tianhengcheng@gmail.com

copyright@wondervictor

"""

import os
import tqdm
import pickle
import argparse
import numpy as np
from scipy.io import loadmat
from bbox import bbox_overlaps
from IPython import embed


def get_gt_boxes(gt_dir):
    """ gt dir: (wider_face_val.mat, wider_easy_val.mat, wider_medium_val.mat, wider_hard_val.mat)"""

    gt_mat = loadmat(os.path.join(gt_dir, 'wider_face_val.mat'))
    hard_mat = loadmat(os.path.join(gt_dir, 'wider_hard_val.mat'))
    medium_mat = loadmat(os.path.join(gt_dir, 'wider_medium_val.mat'))
    easy_mat = loadmat(os.path.join(gt_dir, 'wider_easy_val.mat'))

    facebox_list = gt_mat['face_bbx_list']
    event_list = gt_mat['event_list']
    file_list = gt_mat['file_list']

    hard_gt_list = hard_mat['gt_list']
    medium_gt_list = medium_mat['gt_list']
    easy_gt_list = easy_mat['gt_list']

    return facebox_list, event_list, file_list, hard_gt_list, medium_gt_list, easy_gt_list


def get_gt_boxes_from_txt(gt_path, cache_dir):

    cache_file = os.path.join(cache_dir, 'gt_cache.pkl')
    if os.path.exists(cache_file):
        f = open(cache_file, 'rb')
        boxes = pickle.load(f)
        f.close()
        return boxes

    f = open(gt_path, 'r')
    state = 0
    lines = f.readlines()
    lines = list(map(lambda x: x.rstrip('\r\n'), lines))
    boxes = {}
    print(len(lines))
    f.close()
    current_boxes = []
    current_name = None
    for line in lines:
        if state == 0 and '--' in line:
            state = 1
            current_name = line
            continue
        if state == 1:
            state = 2
            continue

        if state == 2 and '--' in line:
            state = 1
            boxes[current_name] = np.array(current_boxes).astype('float32')
            current_name = line
            current_boxes = []
            continue

        if state == 2:
            box = [float(x) for x in line.split(' ')[:4]]
            current_boxes.append(box)
            continue

    f = open(cache_file, 'wb')
    pickle.dump(boxes, f)
    f.close()
    return boxes


def read_pred_file(filepath):

    with open(filepath, 'r') as f:
        lines = f.readlines()
        img_file = lines[0].rstrip('\n\r')
        lines = lines[2:]

    # b = lines[0].rstrip('\r\n').split(' ')[:-1]
    # c = float(b)
    # a = map(lambda x: [[float(a[0]), float(a[1]), float(a[2]), float(a[3]), float(a[4])] for a in x.rstrip('\r\n').split(' ')], lines)
    boxes = []
    for line in lines:
        line = line.rstrip('\r\n').split(' ')
        if line[0] is '':
            continue
        # a = float(line[4])
        boxes.append([float(line[0]), float(line[1]), float(line[2]), float(line[3]), float(line[4])])
    boxes = np.array(boxes)
    # boxes = np.array(list(map(lambda x: [float(a) for a in x.rstrip('\r\n').split(' ')], lines))).astype('float')
    return img_file.split('/')[-1], boxes


def get_preds(pred_dir):
    events = os.listdir(pred_dir)
    boxes = dict()
    pbar = tqdm.tqdm(events)

    for event in pbar:
        pbar.set_description('Reading Predictions ')
        event_dir = os.path.join(pred_dir, event)
        event_images = os.listdir(event_dir)
        current_event = dict()
        for imgtxt in event_images:
            imgname, _boxes = read_pred_file(os.path.join(event_dir, imgtxt))
            current_event[imgname.rstrip('.jpg')] = _boxes
        boxes[event] = current_event
    return boxes


def norm_score(pred):
    """ norm score

    pred {key: [[x1,y1,x2,y2,s]]}

    """

    max_score = 0
    min_score = 1

    for _, k in pred.items():
        for _, v in k.items():
            if len(v) == 0:
                continue
            _min = np.min(v[:, -1])
            _max = np.max(v[:, -1])
            max_score = max(_max, max_score)
            min_score = min(_min, min_score)

    diff = max_score - min_score
    for _, k in pred.items():
        for _, v in k.items():
            if len(v) == 0:
                continue
            v[:, -1] = (v[:, -1] - min_score)/diff


def image_eval(pred, gt, ignore, iou_thresh):
    """ single image evaluation

    pred: Nx5

    gt: Nx4

    ignore:

    """

    _pred = pred.copy()
    _gt = gt.copy()
    pred_recall = np.zeros(_pred.shape[0])
    recall_list = np.zeros(_gt.shape[0])
    proposal_list = np.ones(_pred.shape[0])

    _pred[:, 2] = _pred[:, 2] + _pred[:, 0]
    _pred[:, 3] = _pred[:, 3] + _pred[:, 1]
    _gt[:, 2] = _gt[:, 2] + _gt[:, 0]
    _gt[:, 3] = _gt[:, 3] + _gt[:, 1]

    overlaps = bbox_overlaps(_pred[:, :4], _gt)

    for h in range(_pred.shape[0]):

        gt_overlap = overlaps[h]
        max_overlap, max_idx = gt_overlap.max(), gt_overlap.argmax()
        if max_overlap >= iou_thresh:
            if ignore[max_idx] == 0:
                recall_list[max_idx] = -1
                proposal_list[h] = -1
            elif recall_list[max_idx] == 0:
                recall_list[max_idx] = 1

        r_keep_index = np.where(recall_list == 1)[0]
        pred_recall[h] = len(r_keep_index)
    return pred_recall, proposal_list


def img_pr_info(thresh_num, pred_info, proposal_list, pred_recall):
    pr_info = np.zeros((thresh_num, 2)).astype('float')
    for t in range(thresh_num):

        thresh = 1 - (t+1)/thresh_num
        r_index = np.where(pred_info[:, 4] >= thresh)[0]
        if len(r_index) == 0:
            pr_info[t, 0] = 0
            pr_info[t, 1] = 0
        else:
            r_index = r_index[-1]
            p_index = np.where(proposal_list[:r_index+1] == 1)[0]
            pr_info[t, 0] = len(p_index)
            pr_info[t, 1] = pred_recall[r_index]
    return pr_info


def dataset_pr_info(thresh_num, pr_curve, count_face):
    _pr_curve = np.zeros((thresh_num, 2))
    for i in range(thresh_num):
        _pr_curve[i, 0] = pr_curve[i, 1] / pr_curve[i, 0]
        _pr_curve[i, 1] = pr_curve[i, 1] / count_face
    return _pr_curve


def voc_ap(rec, prec):

    # correct AP calculation
    # first append sentinel values at the end
    mrec = np.concatenate(([0.], rec, [1.]))
    mpre = np.concatenate(([0.], prec, [0.]))

    # compute the precision envelope
    for i in range(mpre.size - 1, 0, -1):
        mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i])

    # to calculate area under PR curve, look for points
    # where X axis (recall) changes value
    i = np.where(mrec[1:] != mrec[:-1])[0]

    # and sum (\Delta recall) * prec
    ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])
    return ap


def evaluation(pred, gt_path, iou_thresh=0.5):
    pred = get_preds(pred)
    norm_score(pred)
    facebox_list, event_list, file_list, hard_gt_list, medium_gt_list, easy_gt_list = get_gt_boxes(gt_path)
    event_num = len(event_list)
    thresh_num = 1000
    settings = ['easy', 'medium', 'hard']
    setting_gts = [easy_gt_list, medium_gt_list, hard_gt_list]
    aps = []
    for setting_id in range(3):
        # different setting
        gt_list = setting_gts[setting_id]
        count_face = 0
        pr_curve = np.zeros((thresh_num, 2)).astype('float')
        # [hard, medium, easy]
        pbar = tqdm.tqdm(range(event_num))
        for i in pbar:
            pbar.set_description('Processing {}'.format(settings[setting_id]))
            event_name = str(event_list[i][0][0])
            img_list = file_list[i][0]
            pred_list = pred[event_name]
            sub_gt_list = gt_list[i][0]
            # img_pr_info_list = np.zeros((len(img_list), thresh_num, 2))
            gt_bbx_list = facebox_list[i][0]

            for j in range(len(img_list)):
                pred_info = pred_list[str(img_list[j][0][0])]

                gt_boxes = gt_bbx_list[j][0].astype('float')
                keep_index = sub_gt_list[j][0]
                count_face += len(keep_index)

                if len(gt_boxes) == 0 or len(pred_info) == 0:
                    continue
                ignore = np.zeros(gt_boxes.shape[0])
                if len(keep_index) != 0:
                    ignore[keep_index-1] = 1
                pred_recall, proposal_list = image_eval(pred_info, gt_boxes, ignore, iou_thresh)

                _img_pr_info = img_pr_info(thresh_num, pred_info, proposal_list, pred_recall)

                pr_curve += _img_pr_info
        pr_curve = dataset_pr_info(thresh_num, pr_curve, count_face)

        propose = pr_curve[:, 0]
        recall = pr_curve[:, 1]

        ap = voc_ap(recall, propose)
        aps.append(ap)

    print("==================== Results ====================")
    print("Easy   Val AP: {}".format(aps[0]))
    print("Medium Val AP: {}".format(aps[1]))
    print("Hard   Val AP: {}".format(aps[2]))
    print("=================================================")


if __name__ == '__main__':

    parser = argparse.ArgumentParser()
    parser.add_argument('-p', '--pred', default="./widerface_txt/")
    parser.add_argument('-g', '--gt', default='./ground_truth/')

    args = parser.parse_args()
    evaluation(args.pred, args.gt)