|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from torch.autograd import Variable
|
|
from utils.box_utils import match, log_sum_exp
|
|
from data import cfg_mnet
|
|
GPU = cfg_mnet['gpu_train']
|
|
|
|
class MultiBoxLoss(nn.Module):
|
|
"""SSD Weighted Loss Function
|
|
Compute Targets:
|
|
1) Produce Confidence Target Indices by matching ground truth boxes
|
|
with (default) 'priorboxes' that have jaccard index > threshold parameter
|
|
(default threshold: 0.5).
|
|
2) Produce localization target by 'encoding' variance into offsets of ground
|
|
truth boxes and their matched 'priorboxes'.
|
|
3) Hard negative mining to filter the excessive number of negative examples
|
|
that comes with using a large number of default bounding boxes.
|
|
(default negative:positive ratio 3:1)
|
|
Objective Loss:
|
|
L(x,c,l,g) = (Lconf(x, c) + αLloc(x,l,g)) / N
|
|
Where, Lconf is the CrossEntropy Loss and Lloc is the SmoothL1 Loss
|
|
weighted by α which is set to 1 by cross val.
|
|
Args:
|
|
c: class confidences,
|
|
l: predicted boxes,
|
|
g: ground truth boxes
|
|
N: number of matched default boxes
|
|
See: https://arxiv.org/pdf/1512.02325.pdf for more details.
|
|
"""
|
|
|
|
def __init__(self, num_classes, overlap_thresh, prior_for_matching, bkg_label, neg_mining, neg_pos, neg_overlap, encode_target):
|
|
super(MultiBoxLoss, self).__init__()
|
|
self.num_classes = num_classes
|
|
self.threshold = overlap_thresh
|
|
self.background_label = bkg_label
|
|
self.encode_target = encode_target
|
|
self.use_prior_for_matching = prior_for_matching
|
|
self.do_neg_mining = neg_mining
|
|
self.negpos_ratio = neg_pos
|
|
self.neg_overlap = neg_overlap
|
|
self.variance = [0.1, 0.2]
|
|
|
|
def forward(self, predictions, priors, targets):
|
|
"""Multibox Loss
|
|
Args:
|
|
predictions (tuple): A tuple containing loc preds, conf preds,
|
|
and prior boxes from SSD net.
|
|
conf shape: torch.size(batch_size,num_priors,num_classes)
|
|
loc shape: torch.size(batch_size,num_priors,4)
|
|
priors shape: torch.size(num_priors,4)
|
|
|
|
ground_truth (tensor): Ground truth boxes and labels for a batch,
|
|
shape: [batch_size,num_objs,5] (last idx is the label).
|
|
"""
|
|
|
|
loc_data, conf_data, landm_data = predictions
|
|
priors = priors
|
|
num = loc_data.size(0)
|
|
num_priors = (priors.size(0))
|
|
|
|
|
|
loc_t = torch.Tensor(num, num_priors, 4)
|
|
landm_t = torch.Tensor(num, num_priors, 10)
|
|
conf_t = torch.LongTensor(num, num_priors)
|
|
for idx in range(num):
|
|
truths = targets[idx][:, :4].data
|
|
labels = targets[idx][:, -1].data
|
|
landms = targets[idx][:, 4:14].data
|
|
defaults = priors.data
|
|
match(self.threshold, truths, defaults, self.variance, labels, landms, loc_t, conf_t, landm_t, idx)
|
|
if GPU:
|
|
loc_t = loc_t.cuda()
|
|
conf_t = conf_t.cuda()
|
|
landm_t = landm_t.cuda()
|
|
|
|
zeros = torch.tensor(0).cuda()
|
|
|
|
|
|
pos1 = conf_t > zeros
|
|
num_pos_landm = pos1.long().sum(1, keepdim=True)
|
|
N1 = max(num_pos_landm.data.sum().float(), 1)
|
|
pos_idx1 = pos1.unsqueeze(pos1.dim()).expand_as(landm_data)
|
|
landm_p = landm_data[pos_idx1].view(-1, 10)
|
|
landm_t = landm_t[pos_idx1].view(-1, 10)
|
|
loss_landm = F.smooth_l1_loss(landm_p, landm_t, reduction='sum')
|
|
|
|
|
|
pos = conf_t != zeros
|
|
conf_t[pos] = 1
|
|
|
|
|
|
|
|
pos_idx = pos.unsqueeze(pos.dim()).expand_as(loc_data)
|
|
loc_p = loc_data[pos_idx].view(-1, 4)
|
|
loc_t = loc_t[pos_idx].view(-1, 4)
|
|
loss_l = F.smooth_l1_loss(loc_p, loc_t, reduction='sum')
|
|
|
|
|
|
batch_conf = conf_data.view(-1, self.num_classes)
|
|
loss_c = log_sum_exp(batch_conf) - batch_conf.gather(1, conf_t.view(-1, 1))
|
|
|
|
|
|
loss_c[pos.view(-1, 1)] = 0
|
|
loss_c = loss_c.view(num, -1)
|
|
_, loss_idx = loss_c.sort(1, descending=True)
|
|
_, idx_rank = loss_idx.sort(1)
|
|
num_pos = pos.long().sum(1, keepdim=True)
|
|
num_neg = torch.clamp(self.negpos_ratio*num_pos, max=pos.size(1)-1)
|
|
neg = idx_rank < num_neg.expand_as(idx_rank)
|
|
|
|
|
|
pos_idx = pos.unsqueeze(2).expand_as(conf_data)
|
|
neg_idx = neg.unsqueeze(2).expand_as(conf_data)
|
|
conf_p = conf_data[(pos_idx+neg_idx).gt(0)].view(-1,self.num_classes)
|
|
targets_weighted = conf_t[(pos+neg).gt(0)]
|
|
loss_c = F.cross_entropy(conf_p, targets_weighted, reduction='sum')
|
|
|
|
|
|
N = max(num_pos.data.sum().float(), 1)
|
|
loss_l /= N
|
|
loss_c /= N
|
|
loss_landm /= N1
|
|
|
|
return loss_l, loss_c, loss_landm
|
|
|