|
import time
|
|
import torch
|
|
import torch.nn as nn
|
|
import torchvision.models._utils as _utils
|
|
import torchvision.models as models
|
|
import torch.nn.functional as F
|
|
from torch.autograd import Variable
|
|
|
|
def conv_bn(inp, oup, stride = 1, leaky = 0):
|
|
return nn.Sequential(
|
|
nn.Conv2d(inp, oup, 3, stride, 1, bias=False),
|
|
nn.BatchNorm2d(oup),
|
|
nn.LeakyReLU(negative_slope=leaky, inplace=True)
|
|
)
|
|
|
|
def conv_bn_no_relu(inp, oup, stride):
|
|
return nn.Sequential(
|
|
nn.Conv2d(inp, oup, 3, stride, 1, bias=False),
|
|
nn.BatchNorm2d(oup),
|
|
)
|
|
|
|
def conv_bn1X1(inp, oup, stride, leaky=0):
|
|
return nn.Sequential(
|
|
nn.Conv2d(inp, oup, 1, stride, padding=0, bias=False),
|
|
nn.BatchNorm2d(oup),
|
|
nn.LeakyReLU(negative_slope=leaky, inplace=True)
|
|
)
|
|
|
|
def conv_dw(inp, oup, stride, leaky=0.1):
|
|
return nn.Sequential(
|
|
nn.Conv2d(inp, inp, 3, stride, 1, groups=inp, bias=False),
|
|
nn.BatchNorm2d(inp),
|
|
nn.LeakyReLU(negative_slope= leaky,inplace=True),
|
|
|
|
nn.Conv2d(inp, oup, 1, 1, 0, bias=False),
|
|
nn.BatchNorm2d(oup),
|
|
nn.LeakyReLU(negative_slope= leaky,inplace=True),
|
|
)
|
|
|
|
class SSH(nn.Module):
|
|
def __init__(self, in_channel, out_channel):
|
|
super(SSH, self).__init__()
|
|
assert out_channel % 4 == 0
|
|
leaky = 0
|
|
if (out_channel <= 64):
|
|
leaky = 0.1
|
|
self.conv3X3 = conv_bn_no_relu(in_channel, out_channel//2, stride=1)
|
|
|
|
self.conv5X5_1 = conv_bn(in_channel, out_channel//4, stride=1, leaky = leaky)
|
|
self.conv5X5_2 = conv_bn_no_relu(out_channel//4, out_channel//4, stride=1)
|
|
|
|
self.conv7X7_2 = conv_bn(out_channel//4, out_channel//4, stride=1, leaky = leaky)
|
|
self.conv7x7_3 = conv_bn_no_relu(out_channel//4, out_channel//4, stride=1)
|
|
|
|
def forward(self, input):
|
|
conv3X3 = self.conv3X3(input)
|
|
|
|
conv5X5_1 = self.conv5X5_1(input)
|
|
conv5X5 = self.conv5X5_2(conv5X5_1)
|
|
|
|
conv7X7_2 = self.conv7X7_2(conv5X5_1)
|
|
conv7X7 = self.conv7x7_3(conv7X7_2)
|
|
|
|
out = torch.cat([conv3X3, conv5X5, conv7X7], dim=1)
|
|
out = F.relu(out)
|
|
return out
|
|
|
|
class FPN(nn.Module):
|
|
def __init__(self,in_channels_list,out_channels):
|
|
super(FPN,self).__init__()
|
|
leaky = 0
|
|
if (out_channels <= 64):
|
|
leaky = 0.1
|
|
self.output1 = conv_bn1X1(in_channels_list[0], out_channels, stride = 1, leaky = leaky)
|
|
self.output2 = conv_bn1X1(in_channels_list[1], out_channels, stride = 1, leaky = leaky)
|
|
self.output3 = conv_bn1X1(in_channels_list[2], out_channels, stride = 1, leaky = leaky)
|
|
|
|
self.merge1 = conv_bn(out_channels, out_channels, leaky = leaky)
|
|
self.merge2 = conv_bn(out_channels, out_channels, leaky = leaky)
|
|
|
|
def forward(self, input):
|
|
|
|
input = list(input.values())
|
|
|
|
output1 = self.output1(input[0])
|
|
output2 = self.output2(input[1])
|
|
output3 = self.output3(input[2])
|
|
|
|
up3 = F.interpolate(output3, size=[output2.size(2), output2.size(3)], mode="nearest")
|
|
output2 = output2 + up3
|
|
output2 = self.merge2(output2)
|
|
|
|
up2 = F.interpolate(output2, size=[output1.size(2), output1.size(3)], mode="nearest")
|
|
output1 = output1 + up2
|
|
output1 = self.merge1(output1)
|
|
|
|
out = [output1, output2, output3]
|
|
return out
|
|
|
|
|
|
|
|
class MobileNetV1(nn.Module):
|
|
def __init__(self):
|
|
super(MobileNetV1, self).__init__()
|
|
self.stage1 = nn.Sequential(
|
|
conv_bn(3, 8, 2, leaky = 0.1),
|
|
conv_dw(8, 16, 1),
|
|
conv_dw(16, 32, 2),
|
|
conv_dw(32, 32, 1),
|
|
conv_dw(32, 64, 2),
|
|
conv_dw(64, 64, 1),
|
|
)
|
|
self.stage2 = nn.Sequential(
|
|
conv_dw(64, 128, 2),
|
|
conv_dw(128, 128, 1),
|
|
conv_dw(128, 128, 1),
|
|
conv_dw(128, 128, 1),
|
|
conv_dw(128, 128, 1),
|
|
conv_dw(128, 128, 1),
|
|
)
|
|
self.stage3 = nn.Sequential(
|
|
conv_dw(128, 256, 2),
|
|
conv_dw(256, 256, 1),
|
|
)
|
|
self.avg = nn.AdaptiveAvgPool2d((1,1))
|
|
self.fc = nn.Linear(256, 1000)
|
|
|
|
def forward(self, x):
|
|
x = self.stage1(x)
|
|
x = self.stage2(x)
|
|
x = self.stage3(x)
|
|
x = self.avg(x)
|
|
|
|
x = x.view(-1, 256)
|
|
x = self.fc(x)
|
|
return x
|
|
|
|
|