|
from __future__ import print_function
|
|
import os
|
|
import argparse
|
|
import torch
|
|
import torch.backends.cudnn as cudnn
|
|
import numpy as np
|
|
from data import cfg_mnet, cfg_re50
|
|
from layers.functions.prior_box import PriorBox
|
|
from utils.nms.py_cpu_nms import py_cpu_nms
|
|
import cv2
|
|
from models.retinaface import RetinaFace
|
|
from utils.box_utils import decode, decode_landm
|
|
from utils.timer import Timer
|
|
|
|
|
|
parser = argparse.ArgumentParser(description='Retinaface')
|
|
parser.add_argument('-m', '--trained_model', default='./weights/Resnet50_Final.pth',
|
|
type=str, help='Trained state_dict file path to open')
|
|
parser.add_argument('--network', default='resnet50', help='Backbone network mobile0.25 or resnet50')
|
|
parser.add_argument('--origin_size', default=True, type=str, help='Whether use origin image size to evaluate')
|
|
parser.add_argument('--save_folder', default='./widerface_evaluate/widerface_txt/', type=str, help='Dir to save txt results')
|
|
parser.add_argument('--cpu', action="store_true", default=False, help='Use cpu inference')
|
|
parser.add_argument('--dataset_folder', default='./data/widerface/val/images/', type=str, help='dataset path')
|
|
parser.add_argument('--confidence_threshold', default=0.02, type=float, help='confidence_threshold')
|
|
parser.add_argument('--top_k', default=5000, type=int, help='top_k')
|
|
parser.add_argument('--nms_threshold', default=0.4, type=float, help='nms_threshold')
|
|
parser.add_argument('--keep_top_k', default=750, type=int, help='keep_top_k')
|
|
parser.add_argument('-s', '--save_image', action="store_true", default=False, help='show detection results')
|
|
parser.add_argument('--vis_thres', default=0.5, type=float, help='visualization_threshold')
|
|
args = parser.parse_args()
|
|
|
|
|
|
def check_keys(model, pretrained_state_dict):
|
|
ckpt_keys = set(pretrained_state_dict.keys())
|
|
model_keys = set(model.state_dict().keys())
|
|
used_pretrained_keys = model_keys & ckpt_keys
|
|
unused_pretrained_keys = ckpt_keys - model_keys
|
|
missing_keys = model_keys - ckpt_keys
|
|
print('Missing keys:{}'.format(len(missing_keys)))
|
|
print('Unused checkpoint keys:{}'.format(len(unused_pretrained_keys)))
|
|
print('Used keys:{}'.format(len(used_pretrained_keys)))
|
|
assert len(used_pretrained_keys) > 0, 'load NONE from pretrained checkpoint'
|
|
return True
|
|
|
|
|
|
def remove_prefix(state_dict, prefix):
|
|
''' Old style model is stored with all names of parameters sharing common prefix 'module.' '''
|
|
print('remove prefix \'{}\''.format(prefix))
|
|
f = lambda x: x.split(prefix, 1)[-1] if x.startswith(prefix) else x
|
|
return {f(key): value for key, value in state_dict.items()}
|
|
|
|
|
|
def load_model(model, pretrained_path, load_to_cpu):
|
|
print('Loading pretrained model from {}'.format(pretrained_path))
|
|
if load_to_cpu:
|
|
pretrained_dict = torch.load(pretrained_path, map_location=lambda storage, loc: storage)
|
|
else:
|
|
device = torch.cuda.current_device()
|
|
pretrained_dict = torch.load(pretrained_path, map_location=lambda storage, loc: storage.cuda(device))
|
|
if "state_dict" in pretrained_dict.keys():
|
|
pretrained_dict = remove_prefix(pretrained_dict['state_dict'], 'module.')
|
|
else:
|
|
pretrained_dict = remove_prefix(pretrained_dict, 'module.')
|
|
check_keys(model, pretrained_dict)
|
|
model.load_state_dict(pretrained_dict, strict=False)
|
|
return model
|
|
|
|
|
|
if __name__ == '__main__':
|
|
torch.set_grad_enabled(False)
|
|
|
|
cfg = None
|
|
if args.network == "mobile0.25":
|
|
cfg = cfg_mnet
|
|
elif args.network == "resnet50":
|
|
cfg = cfg_re50
|
|
|
|
net = RetinaFace(cfg=cfg, phase = 'test')
|
|
net = load_model(net, args.trained_model, args.cpu)
|
|
net.eval()
|
|
print('Finished loading model!')
|
|
print(net)
|
|
cudnn.benchmark = True
|
|
device = torch.device("cpu" if args.cpu else "cuda")
|
|
net = net.to(device)
|
|
|
|
|
|
testset_folder = args.dataset_folder
|
|
testset_list = args.dataset_folder[:-7] + "wider_val.txt"
|
|
|
|
with open(testset_list, 'r') as fr:
|
|
test_dataset = fr.read().split()
|
|
num_images = len(test_dataset)
|
|
|
|
_t = {'forward_pass': Timer(), 'misc': Timer()}
|
|
|
|
|
|
for i, img_name in enumerate(test_dataset):
|
|
image_path = testset_folder + img_name
|
|
img_raw = cv2.imread(image_path, cv2.IMREAD_COLOR)
|
|
img = np.float32(img_raw)
|
|
|
|
|
|
target_size = 1600
|
|
max_size = 2150
|
|
im_shape = img.shape
|
|
im_size_min = np.min(im_shape[0:2])
|
|
im_size_max = np.max(im_shape[0:2])
|
|
resize = float(target_size) / float(im_size_min)
|
|
|
|
if np.round(resize * im_size_max) > max_size:
|
|
resize = float(max_size) / float(im_size_max)
|
|
if args.origin_size:
|
|
resize = 1
|
|
|
|
if resize != 1:
|
|
img = cv2.resize(img, None, None, fx=resize, fy=resize, interpolation=cv2.INTER_LINEAR)
|
|
im_height, im_width, _ = img.shape
|
|
scale = torch.Tensor([img.shape[1], img.shape[0], img.shape[1], img.shape[0]])
|
|
img -= (104, 117, 123)
|
|
img = img.transpose(2, 0, 1)
|
|
img = torch.from_numpy(img).unsqueeze(0)
|
|
img = img.to(device)
|
|
scale = scale.to(device)
|
|
|
|
_t['forward_pass'].tic()
|
|
loc, conf, landms = net(img)
|
|
_t['forward_pass'].toc()
|
|
_t['misc'].tic()
|
|
priorbox = PriorBox(cfg, image_size=(im_height, im_width))
|
|
priors = priorbox.forward()
|
|
priors = priors.to(device)
|
|
prior_data = priors.data
|
|
boxes = decode(loc.data.squeeze(0), prior_data, cfg['variance'])
|
|
boxes = boxes * scale / resize
|
|
boxes = boxes.cpu().numpy()
|
|
scores = conf.squeeze(0).data.cpu().numpy()[:, 1]
|
|
landms = decode_landm(landms.data.squeeze(0), prior_data, cfg['variance'])
|
|
scale1 = torch.Tensor([img.shape[3], img.shape[2], img.shape[3], img.shape[2],
|
|
img.shape[3], img.shape[2], img.shape[3], img.shape[2],
|
|
img.shape[3], img.shape[2]])
|
|
scale1 = scale1.to(device)
|
|
landms = landms * scale1 / resize
|
|
landms = landms.cpu().numpy()
|
|
|
|
|
|
inds = np.where(scores > args.confidence_threshold)[0]
|
|
boxes = boxes[inds]
|
|
landms = landms[inds]
|
|
scores = scores[inds]
|
|
|
|
|
|
order = scores.argsort()[::-1]
|
|
|
|
boxes = boxes[order]
|
|
landms = landms[order]
|
|
scores = scores[order]
|
|
|
|
|
|
dets = np.hstack((boxes, scores[:, np.newaxis])).astype(np.float32, copy=False)
|
|
keep = py_cpu_nms(dets, args.nms_threshold)
|
|
|
|
dets = dets[keep, :]
|
|
landms = landms[keep]
|
|
|
|
|
|
|
|
|
|
|
|
dets = np.concatenate((dets, landms), axis=1)
|
|
_t['misc'].toc()
|
|
|
|
|
|
save_name = args.save_folder + img_name[:-4] + ".txt"
|
|
dirname = os.path.dirname(save_name)
|
|
if not os.path.isdir(dirname):
|
|
os.makedirs(dirname)
|
|
with open(save_name, "w") as fd:
|
|
bboxs = dets
|
|
file_name = os.path.basename(save_name)[:-4] + "\n"
|
|
bboxs_num = str(len(bboxs)) + "\n"
|
|
fd.write(file_name)
|
|
fd.write(bboxs_num)
|
|
for box in bboxs:
|
|
x = int(box[0])
|
|
y = int(box[1])
|
|
w = int(box[2]) - int(box[0])
|
|
h = int(box[3]) - int(box[1])
|
|
confidence = str(box[4])
|
|
line = str(x) + " " + str(y) + " " + str(w) + " " + str(h) + " " + confidence + " \n"
|
|
fd.write(line)
|
|
|
|
print('im_detect: {:d}/{:d} forward_pass_time: {:.4f}s misc: {:.4f}s'.format(i + 1, num_images, _t['forward_pass'].average_time, _t['misc'].average_time))
|
|
|
|
|
|
if args.save_image:
|
|
for b in dets:
|
|
if b[4] < args.vis_thres:
|
|
continue
|
|
text = "{:.4f}".format(b[4])
|
|
b = list(map(int, b))
|
|
cv2.rectangle(img_raw, (b[0], b[1]), (b[2], b[3]), (0, 0, 255), 2)
|
|
cx = b[0]
|
|
cy = b[1] + 12
|
|
cv2.putText(img_raw, text, (cx, cy),
|
|
cv2.FONT_HERSHEY_DUPLEX, 0.5, (255, 255, 255))
|
|
|
|
|
|
cv2.circle(img_raw, (b[5], b[6]), 1, (0, 0, 255), 4)
|
|
cv2.circle(img_raw, (b[7], b[8]), 1, (0, 255, 255), 4)
|
|
cv2.circle(img_raw, (b[9], b[10]), 1, (255, 0, 255), 4)
|
|
cv2.circle(img_raw, (b[11], b[12]), 1, (0, 255, 0), 4)
|
|
cv2.circle(img_raw, (b[13], b[14]), 1, (255, 0, 0), 4)
|
|
|
|
if not os.path.exists("./results/"):
|
|
os.makedirs("./results/")
|
|
name = "./results/" + str(i) + ".jpg"
|
|
cv2.imwrite(name, img_raw)
|
|
|
|
|