import torch | |
from itertools import product as product | |
import numpy as np | |
from math import ceil | |
class PriorBox(object): | |
def __init__(self, cfg, image_size=None, phase='test'): | |
super(PriorBox, self).__init__() | |
self.min_sizes = cfg['min_sizes'] | |
self.steps = cfg['steps'] | |
self.clip = cfg['clip'] | |
self.image_size = image_size | |
self.feature_maps = [[ceil(self.image_size[0]/step), ceil(self.image_size[1]/step)] for step in self.steps] | |
self.name = "s" | |
def forward(self): | |
anchors = [] | |
for k, f in enumerate(self.feature_maps): | |
min_sizes = self.min_sizes[k] | |
for i, j in product(range(f[0]), range(f[1])): | |
for min_size in min_sizes: | |
s_kx = min_size / self.image_size[1] | |
s_ky = min_size / self.image_size[0] | |
dense_cx = [x * self.steps[k] / self.image_size[1] for x in [j + 0.5]] | |
dense_cy = [y * self.steps[k] / self.image_size[0] for y in [i + 0.5]] | |
for cy, cx in product(dense_cy, dense_cx): | |
anchors += [cx, cy, s_kx, s_ky] | |
# back to torch land | |
output = torch.Tensor(anchors).view(-1, 4) | |
if self.clip: | |
output.clamp_(max=1, min=0) | |
return output | |