|
import torch
|
|
from itertools import product as product
|
|
import numpy as np
|
|
from math import ceil
|
|
|
|
|
|
class PriorBox(object):
|
|
def __init__(self, cfg, image_size=None, phase='train'):
|
|
super(PriorBox, self).__init__()
|
|
self.min_sizes = cfg['min_sizes']
|
|
self.steps = cfg['steps']
|
|
self.clip = cfg['clip']
|
|
self.image_size = image_size
|
|
self.feature_maps = [[ceil(self.image_size[0]/step), ceil(self.image_size[1]/step)] for step in self.steps]
|
|
self.name = "s"
|
|
|
|
def forward(self):
|
|
anchors = []
|
|
for k, f in enumerate(self.feature_maps):
|
|
min_sizes = self.min_sizes[k]
|
|
for i, j in product(range(f[0]), range(f[1])):
|
|
for min_size in min_sizes:
|
|
s_kx = min_size / self.image_size[1]
|
|
s_ky = min_size / self.image_size[0]
|
|
dense_cx = [x * self.steps[k] / self.image_size[1] for x in [j + 0.5]]
|
|
dense_cy = [y * self.steps[k] / self.image_size[0] for y in [i + 0.5]]
|
|
for cy, cx in product(dense_cy, dense_cx):
|
|
anchors += [cx, cy, s_kx, s_ky]
|
|
|
|
|
|
output = torch.Tensor(anchors).view(-1, 4)
|
|
if self.clip:
|
|
output.clamp_(max=1, min=0)
|
|
return output
|
|
|