from __future__ import print_function import os import torch import torch.optim as optim import torch.backends.cudnn as cudnn import argparse import torch.utils.data as data from data import WiderFaceDetection, detection_collate, preproc, cfg_mnet, cfg_re50 from layers.modules import MultiBoxLoss from layers.functions.prior_box import PriorBox import time import datetime import math from models.retinaface import RetinaFace parser = argparse.ArgumentParser(description='Retinaface Training') parser.add_argument('--training_dataset', default='./dataset/widerface/widerface/test/label.txt', help='Training dataset directory') parser.add_argument('--network', default='mobile0.25', help='Backbone network mobile0.25 or resnet50') parser.add_argument('--num_workers', default=4, type=int, help='Number of workers used in dataloading') parser.add_argument('--lr', '--learning-rate', default=1e-3, type=float, help='initial learning rate') parser.add_argument('--momentum', default=0.9, type=float, help='momentum') parser.add_argument('--resume_net', default=None, help='resume net for retraining') parser.add_argument('--resume_epoch', default=0, type=int, help='resume iter for retraining') parser.add_argument('--weight_decay', default=5e-4, type=float, help='Weight decay for SGD') parser.add_argument('--gamma', default=0.1, type=float, help='Gamma update for SGD') parser.add_argument('--save_folder', default='./weights/', help='Location to save checkpoint models') args = parser.parse_args() if not os.path.exists(args.save_folder): os.mkdir(args.save_folder) cfg = None if args.network == "mobile0.25": cfg = cfg_mnet elif args.network == "resnet50": cfg = cfg_re50 rgb_mean = (104, 117, 123) # bgr order num_classes = 2 img_dim = cfg['image_size'] num_gpu = cfg['ngpu'] batch_size = cfg['batch_size'] max_epoch = cfg['epoch'] gpu_train = cfg['gpu_train'] num_workers = args.num_workers momentum = args.momentum weight_decay = args.weight_decay initial_lr = args.lr gamma = args.gamma training_dataset = args.training_dataset save_folder = args.save_folder net = RetinaFace(cfg=cfg) print("Printing net...") print(net) if args.resume_net is not None: print('Loading resume network...') state_dict = torch.load(args.resume_net) # create new OrderedDict that does not contain `module.` from collections import OrderedDict new_state_dict = OrderedDict() for k, v in state_dict.items(): head = k[:7] if head == 'module.': name = k[7:] # remove `module.` else: name = k new_state_dict[name] = v net.load_state_dict(new_state_dict) if num_gpu > 1 and gpu_train: net = torch.nn.DataParallel(net).cuda() else: net = net.cuda() cudnn.benchmark = True optimizer = optim.SGD(net.parameters(), lr=initial_lr, momentum=momentum, weight_decay=weight_decay) criterion = MultiBoxLoss(num_classes, 0.35, True, 0, True, 7, 0.35, False) priorbox = PriorBox(cfg, image_size=(img_dim, img_dim)) with torch.no_grad(): priors = priorbox.forward() priors = priors.cuda() def train(): net.train() epoch = 0 + args.resume_epoch print('Loading Dataset...') dataset = WiderFaceDetection( training_dataset,preproc(img_dim, rgb_mean)) epoch_size = math.ceil(len(dataset) / batch_size) max_iter = max_epoch * epoch_size stepvalues = (cfg['decay1'] * epoch_size, cfg['decay2'] * epoch_size) step_index = 0 if args.resume_epoch > 0: start_iter = args.resume_epoch * epoch_size else: start_iter = 0 for iteration in range(start_iter, max_iter): if iteration % epoch_size == 0: # create batch iterator batch_iterator = iter(data.DataLoader(dataset, batch_size, shuffle=True, num_workers=num_workers, collate_fn=detection_collate)) if (epoch % 10 == 0 and epoch > 0) or (epoch % 5 == 0 and epoch > cfg['decay1']): torch.save(net.state_dict(), save_folder + cfg['name']+ '_epoch_' + str(epoch) + '.pth') epoch += 1 load_t0 = time.time() if iteration in stepvalues: step_index += 1 lr = adjust_learning_rate(optimizer, gamma, epoch, step_index, iteration, epoch_size) # load test data images, targets = next(batch_iterator) images = images.cuda() targets = [anno.cuda() for anno in targets] # forward out = net(images) # backprop optimizer.zero_grad() loss_l, loss_c, loss_landm = criterion(out, priors, targets) loss = cfg['loc_weight'] * loss_l + loss_c + loss_landm loss.backward() optimizer.step() load_t1 = time.time() batch_time = load_t1 - load_t0 eta = int(batch_time * (max_iter - iteration)) print('Epoch:{}/{} || Epochiter: {}/{} || Iter: {}/{} || Loc: {:.4f} Cla: {:.4f} Landm: {:.4f} || LR: {:.8f} || Batchtime: {:.4f} s || ETA: {}' .format(epoch, max_epoch, (iteration % epoch_size) + 1, epoch_size, iteration + 1, max_iter, loss_l.item(), loss_c.item(), loss_landm.item(), lr, batch_time, str(datetime.timedelta(seconds=eta)))) torch.save(net.state_dict(), save_folder + cfg['name'] + '_Final.pth') # torch.save(net.state_dict(), save_folder + 'Final_Retinaface.pth') def adjust_learning_rate(optimizer, gamma, epoch, step_index, iteration, epoch_size): """Sets the learning rate # Adapted from PyTorch Imagenet example: # https://github.com/pytorch/examples/blob/master/imagenet/main.py """ warmup_epoch = -1 if epoch <= warmup_epoch: lr = 1e-6 + (initial_lr-1e-6) * iteration / (epoch_size * warmup_epoch) else: lr = initial_lr * (gamma ** (step_index)) for param_group in optimizer.param_groups: param_group['lr'] = lr return lr if __name__ == '__main__': train()