import torch from itertools import product as product import numpy as np from math import ceil class PriorBox(object): def __init__(self, cfg, image_size=None, phase='train'): super(PriorBox, self).__init__() self.min_sizes = cfg['min_sizes'] self.steps = cfg['steps'] self.clip = cfg['clip'] self.image_size = image_size self.feature_maps = [[ceil(self.image_size[0]/step), ceil(self.image_size[1]/step)] for step in self.steps] self.name = "s" def forward(self): anchors = [] for k, f in enumerate(self.feature_maps): min_sizes = self.min_sizes[k] for i, j in product(range(f[0]), range(f[1])): for min_size in min_sizes: s_kx = min_size / self.image_size[1] s_ky = min_size / self.image_size[0] dense_cx = [x * self.steps[k] / self.image_size[1] for x in [j + 0.5]] dense_cy = [y * self.steps[k] / self.image_size[0] for y in [i + 0.5]] for cy, cx in product(dense_cy, dense_cx): anchors += [cx, cy, s_kx, s_ky] # back to torch land output = torch.Tensor(anchors).view(-1, 4) if self.clip: output.clamp_(max=1, min=0) return output