File size: 31,461 Bytes
03b1ce7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
""" Tensorflow implementation of the face detection / alignment algorithm found at
https://github.com/kpzhang93/MTCNN_face_detection_alignment
"""
# MIT License
# 
# Copyright (c) 2016 David Sandberg
# 
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# 
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# 
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from six import string_types, iteritems

import numpy as np
import tensorflow.compat.v1 as tf
#from math import floor
import cv2
import os

def layer(op):
    '''Decorator for composable network layers.'''

    def layer_decorated(self, *args, **kwargs):
        # Automatically set a name if not provided.
        name = kwargs.setdefault('name', self.get_unique_name(op.__name__))
        # Figure out the layer inputs.
        if len(self.terminals) == 0:
            raise RuntimeError('No input variables found for layer %s.' % name)
        elif len(self.terminals) == 1:
            layer_input = self.terminals[0]
        else:
            layer_input = list(self.terminals)
        # Perform the operation and get the output.
        layer_output = op(self, layer_input, *args, **kwargs)
        # Add to layer LUT.
        self.layers[name] = layer_output
        # This output is now the input for the next layer.
        self.feed(layer_output)
        # Return self for chained calls.
        return self

    return layer_decorated

class Network(object):

    def __init__(self, inputs, trainable=True):
        # The input nodes for this network
        self.inputs = inputs
        # The current list of terminal nodes
        self.terminals = []
        # Mapping from layer names to layers
        self.layers = dict(inputs)
        # If true, the resulting variables are set as trainable
        self.trainable = trainable

        self.setup()

    def setup(self):
        '''Construct the network. '''
        raise NotImplementedError('Must be implemented by the subclass.')

    def load(self, data_path, session, ignore_missing=False):
        '''Load network weights.
        data_path: The path to the numpy-serialized network weights
        session: The current TensorFlow session
        ignore_missing: If true, serialized weights for missing layers are ignored.
        '''
        data_dict = np.load(data_path, allow_pickle=True, encoding='latin1').item() #pylint: disable=no-member

        for op_name in data_dict:
            with tf.variable_scope(op_name, reuse=True):
                for param_name, data in iteritems(data_dict[op_name]):
                    try:
                        var = tf.get_variable(param_name)
                        session.run(var.assign(data))
                    except ValueError:
                        if not ignore_missing:
                            raise

    def feed(self, *args):
        '''Set the input(s) for the next operation by replacing the terminal nodes.
        The arguments can be either layer names or the actual layers.
        '''
        assert len(args) != 0
        self.terminals = []
        for fed_layer in args:
            if isinstance(fed_layer, string_types):
                try:
                    fed_layer = self.layers[fed_layer]
                except KeyError:
                    raise KeyError('Unknown layer name fed: %s' % fed_layer)
            self.terminals.append(fed_layer)
        return self

    def get_output(self):
        '''Returns the current network output.'''
        return self.terminals[-1]

    def get_unique_name(self, prefix):
        '''Returns an index-suffixed unique name for the given prefix.
        This is used for auto-generating layer names based on the type-prefix.
        '''
        ident = sum(t.startswith(prefix) for t, _ in self.layers.items()) + 1
        return '%s_%d' % (prefix, ident)

    def make_var(self, name, shape):
        '''Creates a new TensorFlow variable.'''
        return tf.get_variable(name, shape, trainable=self.trainable)

    def validate_padding(self, padding):
        '''Verifies that the padding is one of the supported ones.'''
        assert padding in ('SAME', 'VALID')

    @layer
    def conv(self,
             inp,
             k_h,
             k_w,
             c_o,
             s_h,
             s_w,
             name,
             relu=True,
             padding='SAME',
             group=1,
             biased=True):
        # Verify that the padding is acceptable
        self.validate_padding(padding)
        # Get the number of channels in the input
        c_i = int(inp.get_shape()[-1])
        # Verify that the grouping parameter is valid
        assert c_i % group == 0
        assert c_o % group == 0
        # Convolution for a given input and kernel
        convolve = lambda i, k: tf.nn.conv2d(i, k, [1, s_h, s_w, 1], padding=padding)
        with tf.variable_scope(name) as scope:
            kernel = self.make_var('weights', shape=[k_h, k_w, c_i // group, c_o])
            # This is the common-case. Convolve the input without any further complications.
            output = convolve(inp, kernel)
            # Add the biases
            if biased:
                biases = self.make_var('biases', [c_o])
                output = tf.nn.bias_add(output, biases)
            if relu:
                # ReLU non-linearity
                output = tf.nn.relu(output, name=scope.name)
            return output

    @layer
    def prelu(self, inp, name):
        with tf.variable_scope(name):
            i = int(inp.get_shape()[-1])
            alpha = self.make_var('alpha', shape=(i,))
            output = tf.nn.relu(inp) + tf.multiply(alpha, -tf.nn.relu(-inp))
        return output

    @layer
    def max_pool(self, inp, k_h, k_w, s_h, s_w, name, padding='SAME'):
        self.validate_padding(padding)
        return tf.nn.max_pool(inp,
                              ksize=[1, k_h, k_w, 1],
                              strides=[1, s_h, s_w, 1],
                              padding=padding,
                              name=name)

    @layer
    def fc(self, inp, num_out, name, relu=True):
        with tf.variable_scope(name):
            input_shape = inp.get_shape()
            if input_shape.ndims == 4:
                # The input is spatial. Vectorize it first.
                dim = 1
                for d in input_shape[1:].as_list():
                    dim *= int(d)
                feed_in = tf.reshape(inp, [-1, dim])
            else:
                feed_in, dim = (inp, input_shape.as_list()[-1])
            weights = self.make_var('weights', shape=[dim, num_out])
            biases = self.make_var('biases', [num_out])
            op = tf.nn.relu_layer if relu else tf.nn.xw_plus_b
            fc = op(feed_in, weights, biases, name=name)
            return fc


    """
    Multi dimensional softmax,
    refer to https://github.com/tensorflow/tensorflow/issues/210
    compute softmax along the dimension of target
    the native softmax only supports batch_size x dimension
    """
    @layer
    def softmax(self, target, axis, name=None):
        max_axis = tf.reduce_max(target, axis, keep_dims=True)
        target_exp = tf.exp(target-max_axis)
        normalize = tf.reduce_sum(target_exp, axis, keep_dims=True)
        softmax = tf.div(target_exp, normalize, name)
        return softmax
    
class PNet(Network):
    def setup(self):
        (self.feed('data') #pylint: disable=no-value-for-parameter, no-member
             .conv(3, 3, 10, 1, 1, padding='VALID', relu=False, name='conv1')
             .prelu(name='PReLU1')
             .max_pool(2, 2, 2, 2, name='pool1')
             .conv(3, 3, 16, 1, 1, padding='VALID', relu=False, name='conv2')
             .prelu(name='PReLU2')
             .conv(3, 3, 32, 1, 1, padding='VALID', relu=False, name='conv3')
             .prelu(name='PReLU3')
             .conv(1, 1, 2, 1, 1, relu=False, name='conv4-1')
             .softmax(3,name='prob1'))

        (self.feed('PReLU3') #pylint: disable=no-value-for-parameter
             .conv(1, 1, 4, 1, 1, relu=False, name='conv4-2'))
        
class RNet(Network):
    def setup(self):
        (self.feed('data') #pylint: disable=no-value-for-parameter, no-member
             .conv(3, 3, 28, 1, 1, padding='VALID', relu=False, name='conv1')
             .prelu(name='prelu1')
             .max_pool(3, 3, 2, 2, name='pool1')
             .conv(3, 3, 48, 1, 1, padding='VALID', relu=False, name='conv2')
             .prelu(name='prelu2')
             .max_pool(3, 3, 2, 2, padding='VALID', name='pool2')
             .conv(2, 2, 64, 1, 1, padding='VALID', relu=False, name='conv3')
             .prelu(name='prelu3')
             .fc(128, relu=False, name='conv4')
             .prelu(name='prelu4')
             .fc(2, relu=False, name='conv5-1')
             .softmax(1,name='prob1'))

        (self.feed('prelu4') #pylint: disable=no-value-for-parameter
             .fc(4, relu=False, name='conv5-2'))

class ONet(Network):
    def setup(self):
        (self.feed('data') #pylint: disable=no-value-for-parameter, no-member
             .conv(3, 3, 32, 1, 1, padding='VALID', relu=False, name='conv1')
             .prelu(name='prelu1')
             .max_pool(3, 3, 2, 2, name='pool1')
             .conv(3, 3, 64, 1, 1, padding='VALID', relu=False, name='conv2')
             .prelu(name='prelu2')
             .max_pool(3, 3, 2, 2, padding='VALID', name='pool2')
             .conv(3, 3, 64, 1, 1, padding='VALID', relu=False, name='conv3')
             .prelu(name='prelu3')
             .max_pool(2, 2, 2, 2, name='pool3')
             .conv(2, 2, 128, 1, 1, padding='VALID', relu=False, name='conv4')
             .prelu(name='prelu4')
             .fc(256, relu=False, name='conv5')
             .prelu(name='prelu5')
             .fc(2, relu=False, name='conv6-1')
             .softmax(1, name='prob1'))

        (self.feed('prelu5') #pylint: disable=no-value-for-parameter
             .fc(4, relu=False, name='conv6-2'))

        (self.feed('prelu5') #pylint: disable=no-value-for-parameter
             .fc(10, relu=False, name='conv6-3'))

def create_mtcnn(sess, model_path):
    if not model_path:
        model_path,_ = os.path.split(os.path.realpath(__file__))

    with tf.variable_scope('pnet'):
        data = tf.placeholder(tf.float32, (None,None,None,3), 'input')
        pnet = PNet({'data':data})
        pnet.load(os.path.join(model_path, 'det1.npy'), sess)
    with tf.variable_scope('rnet'):
        data = tf.placeholder(tf.float32, (None,24,24,3), 'input')
        rnet = RNet({'data':data})
        rnet.load(os.path.join(model_path, 'det2.npy'), sess)
    with tf.variable_scope('onet'):
        data = tf.placeholder(tf.float32, (None,48,48,3), 'input')
        onet = ONet({'data':data})
        onet.load(os.path.join(model_path, 'det3.npy'), sess)
        
    pnet_fun = lambda img : sess.run(('pnet/conv4-2/BiasAdd:0', 'pnet/prob1:0'), feed_dict={'pnet/input:0':img})
    rnet_fun = lambda img : sess.run(('rnet/conv5-2/conv5-2:0', 'rnet/prob1:0'), feed_dict={'rnet/input:0':img})
    onet_fun = lambda img : sess.run(('onet/conv6-2/conv6-2:0', 'onet/conv6-3/conv6-3:0', 'onet/prob1:0'), feed_dict={'onet/input:0':img})
    return pnet_fun, rnet_fun, onet_fun

def detect_face(img, minsize, pnet, rnet, onet, threshold, factor):
    # im: input image
    # minsize: minimum of faces' size
    # pnet, rnet, onet: caffemodel
    # threshold: threshold=[th1 th2 th3], th1-3 are three steps's threshold
    # fastresize: resize img from last scale (using in high-resolution images) if fastresize==true
    factor_count=0
    total_boxes=np.empty((0, 9))
    points=np.empty(0)
    h=img.shape[0]
    w=img.shape[1]
    minl=np.amin([h, w])
    m=12.0/minsize
    minl=minl*m
    # creat scale pyramid
    scales=[]
    while minl>=12:
        scales += [m*np.power(factor, factor_count)]
        minl = minl*factor
        factor_count += 1

    # first stage
    for j in range(len(scales)):
        scale=scales[j]
        hs=int(np.ceil(h*scale))
        ws=int(np.ceil(w*scale))
        im_data = imresample(img, (hs, ws))
        im_data = (im_data-127.5)*0.0078125
        img_x = np.expand_dims(im_data, 0)
        img_y = np.transpose(img_x, (0,2,1,3))
        out = pnet(img_y)
        out0 = np.transpose(out[0], (0,2,1,3))
        out1 = np.transpose(out[1], (0,2,1,3))
        
        boxes, _ = generateBoundingBox(out1[0,:,:,1].copy(), out0[0,:,:,:].copy(), scale, threshold[0])
        
        # inter-scale nms
        pick = nms(boxes.copy(), 0.5, 'Union')
        if boxes.size>0 and pick.size>0:
            boxes = boxes[pick,:]
            total_boxes = np.append(total_boxes, boxes, axis=0)

    numbox = total_boxes.shape[0]
    if numbox>0:
        pick = nms(total_boxes.copy(), 0.7, 'Union')
        total_boxes = total_boxes[pick,:]
        regw = total_boxes[:,2]-total_boxes[:,0]
        regh = total_boxes[:,3]-total_boxes[:,1]
        qq1 = total_boxes[:,0]+total_boxes[:,5]*regw
        qq2 = total_boxes[:,1]+total_boxes[:,6]*regh
        qq3 = total_boxes[:,2]+total_boxes[:,7]*regw
        qq4 = total_boxes[:,3]+total_boxes[:,8]*regh
        total_boxes = np.transpose(np.vstack([qq1, qq2, qq3, qq4, total_boxes[:,4]]))
        total_boxes = rerec(total_boxes.copy())
        total_boxes[:,0:4] = np.fix(total_boxes[:,0:4]).astype(np.int32)
        dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph = pad(total_boxes.copy(), w, h)

    numbox = total_boxes.shape[0]
    if numbox>0:
        # second stage
        tempimg = np.zeros((24,24,3,numbox))
        for k in range(0,numbox):
            tmp = np.zeros((int(tmph[k]),int(tmpw[k]),3))
            tmp[dy[k]-1:edy[k],dx[k]-1:edx[k],:] = img[y[k]-1:ey[k],x[k]-1:ex[k],:]
            if tmp.shape[0]>0 and tmp.shape[1]>0 or tmp.shape[0]==0 and tmp.shape[1]==0:
                tempimg[:,:,:,k] = imresample(tmp, (24, 24))
            else:
                return np.empty()
        tempimg = (tempimg-127.5)*0.0078125
        tempimg1 = np.transpose(tempimg, (3,1,0,2))
        out = rnet(tempimg1)
        out0 = np.transpose(out[0])
        out1 = np.transpose(out[1])
        score = out1[1,:]
        ipass = np.where(score>threshold[1])
        total_boxes = np.hstack([total_boxes[ipass[0],0:4].copy(), np.expand_dims(score[ipass].copy(),1)])
        mv = out0[:,ipass[0]]
        if total_boxes.shape[0]>0:
            pick = nms(total_boxes, 0.7, 'Union')
            total_boxes = total_boxes[pick,:]
            total_boxes = bbreg(total_boxes.copy(), np.transpose(mv[:,pick]))
            total_boxes = rerec(total_boxes.copy())

    numbox = total_boxes.shape[0]
    if numbox>0:
        # third stage
        total_boxes = np.fix(total_boxes).astype(np.int32)
        dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph = pad(total_boxes.copy(), w, h)
        tempimg = np.zeros((48,48,3,numbox))
        for k in range(0,numbox):
            tmp = np.zeros((int(tmph[k]),int(tmpw[k]),3))
            tmp[dy[k]-1:edy[k],dx[k]-1:edx[k],:] = img[y[k]-1:ey[k],x[k]-1:ex[k],:]
            if tmp.shape[0]>0 and tmp.shape[1]>0 or tmp.shape[0]==0 and tmp.shape[1]==0:
                tempimg[:,:,:,k] = imresample(tmp, (48, 48))
            else:
                return np.empty()
        tempimg = (tempimg-127.5)*0.0078125
        tempimg1 = np.transpose(tempimg, (3,1,0,2))
        out = onet(tempimg1)
        out0 = np.transpose(out[0])
        out1 = np.transpose(out[1])
        out2 = np.transpose(out[2])
        score = out2[1,:]
        points = out1
        ipass = np.where(score>threshold[2])
        points = points[:,ipass[0]]
        total_boxes = np.hstack([total_boxes[ipass[0],0:4].copy(), np.expand_dims(score[ipass].copy(),1)])
        mv = out0[:,ipass[0]]

        w = total_boxes[:,2]-total_boxes[:,0]+1
        h = total_boxes[:,3]-total_boxes[:,1]+1
        points[0:5,:] = np.tile(w,(5, 1))*points[0:5,:] + np.tile(total_boxes[:,0],(5, 1))-1
        points[5:10,:] = np.tile(h,(5, 1))*points[5:10,:] + np.tile(total_boxes[:,1],(5, 1))-1
        if total_boxes.shape[0]>0:
            total_boxes = bbreg(total_boxes.copy(), np.transpose(mv))
            pick = nms(total_boxes.copy(), 0.7, 'Min')
            total_boxes = total_boxes[pick,:]
            points = points[:,pick]
                
    return total_boxes, points


def bulk_detect_face(images, detection_window_size_ratio, pnet, rnet, onet, threshold, factor):
    # im: input image
    # minsize: minimum of faces' size
    # pnet, rnet, onet: caffemodel
    # threshold: threshold=[th1 th2 th3], th1-3 are three steps's threshold [0-1]

    all_scales = [None] * len(images)
    images_with_boxes = [None] * len(images)

    for i in range(len(images)):
        images_with_boxes[i] = {'total_boxes': np.empty((0, 9))}

    # create scale pyramid
    for index, img in enumerate(images):
        all_scales[index] = []
        h = img.shape[0]
        w = img.shape[1]
        minsize = int(detection_window_size_ratio * np.minimum(w, h))
        factor_count = 0
        minl = np.amin([h, w])
        if minsize <= 12:
            minsize = 12

        m = 12.0 / minsize
        minl = minl * m
        while minl >= 12:
            all_scales[index].append(m * np.power(factor, factor_count))
            minl = minl * factor
            factor_count += 1

    # # # # # # # # # # # # #
    # first stage - fast proposal network (pnet) to obtain face candidates
    # # # # # # # # # # # # #

    images_obj_per_resolution = {}

    # TODO: use some type of rounding to number module 8 to increase probability that pyramid images will have the same resolution across input images

    for index, scales in enumerate(all_scales):
        h = images[index].shape[0]
        w = images[index].shape[1]

        for scale in scales:
            hs = int(np.ceil(h * scale))
            ws = int(np.ceil(w * scale))

            if (ws, hs) not in images_obj_per_resolution:
                images_obj_per_resolution[(ws, hs)] = []

            im_data = imresample(images[index], (hs, ws))
            im_data = (im_data - 127.5) * 0.0078125
            img_y = np.transpose(im_data, (1, 0, 2))  # caffe uses different dimensions ordering
            images_obj_per_resolution[(ws, hs)].append({'scale': scale, 'image': img_y, 'index': index})

    for resolution in images_obj_per_resolution:
        images_per_resolution = [i['image'] for i in images_obj_per_resolution[resolution]]
        outs = pnet(images_per_resolution)

        for index in range(len(outs[0])):
            scale = images_obj_per_resolution[resolution][index]['scale']
            image_index = images_obj_per_resolution[resolution][index]['index']
            out0 = np.transpose(outs[0][index], (1, 0, 2))
            out1 = np.transpose(outs[1][index], (1, 0, 2))

            boxes, _ = generateBoundingBox(out1[:, :, 1].copy(), out0[:, :, :].copy(), scale, threshold[0])

            # inter-scale nms
            pick = nms(boxes.copy(), 0.5, 'Union')
            if boxes.size > 0 and pick.size > 0:
                boxes = boxes[pick, :]
                images_with_boxes[image_index]['total_boxes'] = np.append(images_with_boxes[image_index]['total_boxes'],
                                                                          boxes,
                                                                          axis=0)

    for index, image_obj in enumerate(images_with_boxes):
        numbox = image_obj['total_boxes'].shape[0]
        if numbox > 0:
            h = images[index].shape[0]
            w = images[index].shape[1]
            pick = nms(image_obj['total_boxes'].copy(), 0.7, 'Union')
            image_obj['total_boxes'] = image_obj['total_boxes'][pick, :]
            regw = image_obj['total_boxes'][:, 2] - image_obj['total_boxes'][:, 0]
            regh = image_obj['total_boxes'][:, 3] - image_obj['total_boxes'][:, 1]
            qq1 = image_obj['total_boxes'][:, 0] + image_obj['total_boxes'][:, 5] * regw
            qq2 = image_obj['total_boxes'][:, 1] + image_obj['total_boxes'][:, 6] * regh
            qq3 = image_obj['total_boxes'][:, 2] + image_obj['total_boxes'][:, 7] * regw
            qq4 = image_obj['total_boxes'][:, 3] + image_obj['total_boxes'][:, 8] * regh
            image_obj['total_boxes'] = np.transpose(np.vstack([qq1, qq2, qq3, qq4, image_obj['total_boxes'][:, 4]]))
            image_obj['total_boxes'] = rerec(image_obj['total_boxes'].copy())
            image_obj['total_boxes'][:, 0:4] = np.fix(image_obj['total_boxes'][:, 0:4]).astype(np.int32)
            dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph = pad(image_obj['total_boxes'].copy(), w, h)

            numbox = image_obj['total_boxes'].shape[0]
            tempimg = np.zeros((24, 24, 3, numbox))

            if numbox > 0:
                for k in range(0, numbox):
                    tmp = np.zeros((int(tmph[k]), int(tmpw[k]), 3))
                    tmp[dy[k] - 1:edy[k], dx[k] - 1:edx[k], :] = images[index][y[k] - 1:ey[k], x[k] - 1:ex[k], :]
                    if tmp.shape[0] > 0 and tmp.shape[1] > 0 or tmp.shape[0] == 0 and tmp.shape[1] == 0:
                        tempimg[:, :, :, k] = imresample(tmp, (24, 24))
                    else:
                        return np.empty()

                tempimg = (tempimg - 127.5) * 0.0078125
                image_obj['rnet_input'] = np.transpose(tempimg, (3, 1, 0, 2))

    # # # # # # # # # # # # #
    # second stage - refinement of face candidates with rnet
    # # # # # # # # # # # # #

    bulk_rnet_input = np.empty((0, 24, 24, 3))
    for index, image_obj in enumerate(images_with_boxes):
        if 'rnet_input' in image_obj:
            bulk_rnet_input = np.append(bulk_rnet_input, image_obj['rnet_input'], axis=0)

    out = rnet(bulk_rnet_input)
    out0 = np.transpose(out[0])
    out1 = np.transpose(out[1])
    score = out1[1, :]

    i = 0
    for index, image_obj in enumerate(images_with_boxes):
        if 'rnet_input' not in image_obj:
            continue

        rnet_input_count = image_obj['rnet_input'].shape[0]
        score_per_image = score[i:i + rnet_input_count]
        out0_per_image = out0[:, i:i + rnet_input_count]

        ipass = np.where(score_per_image > threshold[1])
        image_obj['total_boxes'] = np.hstack([image_obj['total_boxes'][ipass[0], 0:4].copy(),
                                              np.expand_dims(score_per_image[ipass].copy(), 1)])

        mv = out0_per_image[:, ipass[0]]

        if image_obj['total_boxes'].shape[0] > 0:
            h = images[index].shape[0]
            w = images[index].shape[1]
            pick = nms(image_obj['total_boxes'], 0.7, 'Union')
            image_obj['total_boxes'] = image_obj['total_boxes'][pick, :]
            image_obj['total_boxes'] = bbreg(image_obj['total_boxes'].copy(), np.transpose(mv[:, pick]))
            image_obj['total_boxes'] = rerec(image_obj['total_boxes'].copy())

            numbox = image_obj['total_boxes'].shape[0]

            if numbox > 0:
                tempimg = np.zeros((48, 48, 3, numbox))
                image_obj['total_boxes'] = np.fix(image_obj['total_boxes']).astype(np.int32)
                dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph = pad(image_obj['total_boxes'].copy(), w, h)

                for k in range(0, numbox):
                    tmp = np.zeros((int(tmph[k]), int(tmpw[k]), 3))
                    tmp[dy[k] - 1:edy[k], dx[k] - 1:edx[k], :] = images[index][y[k] - 1:ey[k], x[k] - 1:ex[k], :]
                    if tmp.shape[0] > 0 and tmp.shape[1] > 0 or tmp.shape[0] == 0 and tmp.shape[1] == 0:
                        tempimg[:, :, :, k] = imresample(tmp, (48, 48))
                    else:
                        return np.empty()
                tempimg = (tempimg - 127.5) * 0.0078125
                image_obj['onet_input'] = np.transpose(tempimg, (3, 1, 0, 2))

        i += rnet_input_count

    # # # # # # # # # # # # #
    # third stage - further refinement and facial landmarks positions with onet
    # # # # # # # # # # # # #

    bulk_onet_input = np.empty((0, 48, 48, 3))
    for index, image_obj in enumerate(images_with_boxes):
        if 'onet_input' in image_obj:
            bulk_onet_input = np.append(bulk_onet_input, image_obj['onet_input'], axis=0)

    out = onet(bulk_onet_input)

    out0 = np.transpose(out[0])
    out1 = np.transpose(out[1])
    out2 = np.transpose(out[2])
    score = out2[1, :]
    points = out1

    i = 0
    ret = []
    for index, image_obj in enumerate(images_with_boxes):
        if 'onet_input' not in image_obj:
            ret.append(None)
            continue

        onet_input_count = image_obj['onet_input'].shape[0]

        out0_per_image = out0[:, i:i + onet_input_count]
        score_per_image = score[i:i + onet_input_count]
        points_per_image = points[:, i:i + onet_input_count]

        ipass = np.where(score_per_image > threshold[2])
        points_per_image = points_per_image[:, ipass[0]]

        image_obj['total_boxes'] = np.hstack([image_obj['total_boxes'][ipass[0], 0:4].copy(),
                                              np.expand_dims(score_per_image[ipass].copy(), 1)])
        mv = out0_per_image[:, ipass[0]]

        w = image_obj['total_boxes'][:, 2] - image_obj['total_boxes'][:, 0] + 1
        h = image_obj['total_boxes'][:, 3] - image_obj['total_boxes'][:, 1] + 1
        points_per_image[0:5, :] = np.tile(w, (5, 1)) * points_per_image[0:5, :] + np.tile(
            image_obj['total_boxes'][:, 0], (5, 1)) - 1
        points_per_image[5:10, :] = np.tile(h, (5, 1)) * points_per_image[5:10, :] + np.tile(
            image_obj['total_boxes'][:, 1], (5, 1)) - 1

        if image_obj['total_boxes'].shape[0] > 0:
            image_obj['total_boxes'] = bbreg(image_obj['total_boxes'].copy(), np.transpose(mv))
            pick = nms(image_obj['total_boxes'].copy(), 0.7, 'Min')
            image_obj['total_boxes'] = image_obj['total_boxes'][pick, :]
            points_per_image = points_per_image[:, pick]

            ret.append((image_obj['total_boxes'], points_per_image))
        else:
            ret.append(None)

        i += onet_input_count

    return ret


# function [boundingbox] = bbreg(boundingbox,reg)
def bbreg(boundingbox,reg):
    # calibrate bounding boxes
    if reg.shape[1]==1:
        reg = np.reshape(reg, (reg.shape[2], reg.shape[3]))

    w = boundingbox[:,2]-boundingbox[:,0]+1
    h = boundingbox[:,3]-boundingbox[:,1]+1
    b1 = boundingbox[:,0]+reg[:,0]*w
    b2 = boundingbox[:,1]+reg[:,1]*h
    b3 = boundingbox[:,2]+reg[:,2]*w
    b4 = boundingbox[:,3]+reg[:,3]*h
    boundingbox[:,0:4] = np.transpose(np.vstack([b1, b2, b3, b4 ]))
    return boundingbox
 
def generateBoundingBox(imap, reg, scale, t):
    # use heatmap to generate bounding boxes
    stride=2
    cellsize=12

    imap = np.transpose(imap)
    dx1 = np.transpose(reg[:,:,0])
    dy1 = np.transpose(reg[:,:,1])
    dx2 = np.transpose(reg[:,:,2])
    dy2 = np.transpose(reg[:,:,3])
    y, x = np.where(imap >= t)
    if y.shape[0]==1:
        dx1 = np.flipud(dx1)
        dy1 = np.flipud(dy1)
        dx2 = np.flipud(dx2)
        dy2 = np.flipud(dy2)
    score = imap[(y,x)]
    reg = np.transpose(np.vstack([ dx1[(y,x)], dy1[(y,x)], dx2[(y,x)], dy2[(y,x)] ]))
    if reg.size==0:
        reg = np.empty((0,3))
    bb = np.transpose(np.vstack([y,x]))
    q1 = np.fix((stride*bb+1)/scale)
    q2 = np.fix((stride*bb+cellsize-1+1)/scale)
    boundingbox = np.hstack([q1, q2, np.expand_dims(score,1), reg])
    return boundingbox, reg
 
# function pick = nms(boxes,threshold,type)
def nms(boxes, threshold, method):
    if boxes.size==0:
        return np.empty((0,3))
    x1 = boxes[:,0]
    y1 = boxes[:,1]
    x2 = boxes[:,2]
    y2 = boxes[:,3]
    s = boxes[:,4]
    area = (x2-x1+1) * (y2-y1+1)
    I = np.argsort(s)
    pick = np.zeros_like(s, dtype=np.int16)
    counter = 0
    while I.size>0:
        i = I[-1]
        pick[counter] = i
        counter += 1
        idx = I[0:-1]
        xx1 = np.maximum(x1[i], x1[idx])
        yy1 = np.maximum(y1[i], y1[idx])
        xx2 = np.minimum(x2[i], x2[idx])
        yy2 = np.minimum(y2[i], y2[idx])
        w = np.maximum(0.0, xx2-xx1+1)
        h = np.maximum(0.0, yy2-yy1+1)
        inter = w * h
        if method is 'Min':
            o = inter / np.minimum(area[i], area[idx])
        else:
            o = inter / (area[i] + area[idx] - inter)
        I = I[np.where(o<=threshold)]
    pick = pick[0:counter]
    return pick

# function [dy edy dx edx y ey x ex tmpw tmph] = pad(total_boxes,w,h)
def pad(total_boxes, w, h):
    # compute the padding coordinates (pad the bounding boxes to square)
    tmpw = (total_boxes[:,2]-total_boxes[:,0]+1).astype(np.int32)
    tmph = (total_boxes[:,3]-total_boxes[:,1]+1).astype(np.int32)
    numbox = total_boxes.shape[0]

    dx = np.ones((numbox), dtype=np.int32)
    dy = np.ones((numbox), dtype=np.int32)
    edx = tmpw.copy().astype(np.int32)
    edy = tmph.copy().astype(np.int32)

    x = total_boxes[:,0].copy().astype(np.int32)
    y = total_boxes[:,1].copy().astype(np.int32)
    ex = total_boxes[:,2].copy().astype(np.int32)
    ey = total_boxes[:,3].copy().astype(np.int32)

    tmp = np.where(ex>w)
    edx.flat[tmp] = np.expand_dims(-ex[tmp]+w+tmpw[tmp],1)
    ex[tmp] = w
    
    tmp = np.where(ey>h)
    edy.flat[tmp] = np.expand_dims(-ey[tmp]+h+tmph[tmp],1)
    ey[tmp] = h

    tmp = np.where(x<1)
    dx.flat[tmp] = np.expand_dims(2-x[tmp],1)
    x[tmp] = 1

    tmp = np.where(y<1)
    dy.flat[tmp] = np.expand_dims(2-y[tmp],1)
    y[tmp] = 1
    
    return dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph

# function [bboxA] = rerec(bboxA)
def rerec(bboxA):
    # convert bboxA to square
    h = bboxA[:,3]-bboxA[:,1]
    w = bboxA[:,2]-bboxA[:,0]
    l = np.maximum(w, h)
    bboxA[:,0] = bboxA[:,0]+w*0.5-l*0.5
    bboxA[:,1] = bboxA[:,1]+h*0.5-l*0.5
    bboxA[:,2:4] = bboxA[:,0:2] + np.transpose(np.tile(l,(2,1)))
    return bboxA

def imresample(img, sz):
    im_data = cv2.resize(img, (sz[1], sz[0]), interpolation=cv2.INTER_AREA) #@UndefinedVariable
    return im_data

    # This method is kept for debugging purpose
#     h=img.shape[0]
#     w=img.shape[1]
#     hs, ws = sz
#     dx = float(w) / ws
#     dy = float(h) / hs
#     im_data = np.zeros((hs,ws,3))
#     for a1 in range(0,hs):
#         for a2 in range(0,ws):
#             for a3 in range(0,3):
#                 im_data[a1,a2,a3] = img[int(floor(a1*dy)),int(floor(a2*dx)),a3]
#     return im_data