FaceRecognition / utils.py
datnguyentien204's picture
6797ab7cc662a6915657900b76bbadf3d8ccd13b941db166ca7352788794f756
03b1ce7 verified
raw
history blame
2.55 kB
import os
import numpy as np
import pickle as pkl
import yaml
from collections import defaultdict
import tensorflow.compat.v1 as tf
import facenet
from PIL import Image
infomation = defaultdict(dict)
cfg = yaml.load(open('config.yaml', 'r'), Loader=yaml.FullLoader)
MODEL_DIR = cfg['PATH']['MODEL_DIR']
CLASSIFIER_DIR = cfg['PATH']['CLASSIFIER_DIR']
NPY_DIR = cfg['PATH']['NPY_DIR']
TRAIN_IMG_DIR = cfg['PATH']['TRAIN_IMG_DIR']
def get_elements_dir(x):
path = x
return path
def load_essentail_components():
model_dir = get_elements_dir(MODEL_DIR)
classifier_filename = get_elements_dir(CLASSIFIER_DIR)
npy = get_elements_dir(NPY_DIR)
train_img = get_elements_dir(TRAIN_IMG_DIR)
return model_dir, classifier_filename, npy, train_img
def gpu_session():
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.7)
sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False))
return sess
def configure_mtcnn(sess, npy, train_img):
pnet, rnet, onet = detect_face.create_mtcnn(sess, npy)
minsize = 30 # minimum size of face
threshold = [0.7, 0.8, 0.8] # three steps's threshold
factor = 0.709 # scale factor
margin = 44
batch_size = 100 # 1000
image_size = 182
input_image_size = 160
HumanNames = os.listdir(train_img)
HumanNames.sort()
def recognize(image):
model_dir, classifier_filename, npy, train_img = load_essentail_components()
with tf.Graph().as_default():
sess = gpu_session()
with sess.as_default():
configure_mtcnn(sess, npy, train_img)
print('Loading Model ...')
facenet.load_model(model=model_dir)
images_placeholder = tf.get_default_graph().get_tensor_by_name("input:0")
embeddings = tf.get_default_graph().get_tensor_by_name("embeddings:0")
phase_train_placeholder = tf.get_default_graph().get_tensor_by_name("phase_train:0")
embedding_size = embeddings.get_shape()[1]
classifier_filename_exp = os.path.expanduser(classifier_filename)
with open(classifier_filename_exp, 'rb') as infile:
(model, class_names) = pickle.load(infile, encoding='latin1')
if image.ndim == 2:
image = facenet.to_rgb(image)
bounding_boxes, _ = detect_face.detect_face(image, minsize, pnet, rnet, onet, threshold, factor)
faceNum = bounding_boxes.shape[0]