File size: 8,038 Bytes
83034b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
# import torch.utils.data as data
# from PIL import Image
# import torchvision.transforms as transforms
# import numpy as np
# import random
#
#
# class BaseDataset(data.Dataset):
# def __init__(self):
# super(BaseDataset, self).__init__()
#
# @staticmethod
# def modify_commandline_options(parser, is_train):
# parser.add_argument('--random_crop', default=False,
# help='Randomize Crop Images')
# return parser
#
# def initialize(self, opt):
# pass
#
#
# def get_params(opt, size):
# w, h = size
# new_h = h
# new_w = w
# if opt.preprocess_mode == 'resize_and_crop':
# new_h = new_w = opt.load_size
# elif opt.preprocess_mode == 'scale_width_and_crop':
# new_w = opt.load_size
# new_h = opt.load_size * h // w
# elif opt.preprocess_mode == 'scale_shortside_and_crop':
# ss, ls = min(w, h), max(w, h) # shortside and longside
# width_is_shorter = w == ss
# ls = int(opt.load_size * ls / ss)
# new_w, new_h = (ss, ls) if width_is_shorter else (ls, ss)
#
# x = random.randint(0, np.maximum(0, new_w - opt.crop_size))
# y = random.randint(0, np.maximum(0, new_h - opt.crop_size))
#
# flip = random.random() > 0.5
# return {'crop_pos': (x, y), 'flip': flip}
#
#
# def get_transform(opt, params, method=Image.BICUBIC, normalize=True, toTensor=True):
# transform_list = []
# if 'resize' in opt.preprocess_mode:
# osize = [opt.load_size, opt.load_size]
# transform_list.append(transforms.Resize(osize, interpolation=method))
# elif 'scale_width' in opt.preprocess_mode:
# transform_list.append(transforms.Lambda(lambda img: __scale_width(img, opt.load_size, method)))
# elif 'scale_shortside' in opt.preprocess_mode:
# transform_list.append(transforms.Lambda(lambda img: __scale_shortside(img, opt.load_size, method)))
#
# if 'crop' in opt.preprocess_mode:
# transform_list.append(transforms.RandomCrop(opt.crop_size))
#
# if opt.preprocess_mode == 'none':
# base = 32
# transform_list.append(transforms.Lambda(lambda img: __make_power_2(img, base, method)))
#
# if opt.preprocess_mode == 'fixed':
# w = opt.crop_size
# h = round(opt.crop_size / opt.aspect_ratio)
# transform_list.append(transforms.Lambda(lambda img: __resize(img, w, h, method)))
#
# if opt.isTrain and not opt.no_flip:
# transform_list.append(transforms.Lambda(lambda img: __flip(img, params['flip'])))
#
# if toTensor:
# transform_list += [transforms.ToTensor()]
#
# if normalize:
# transform_list += [transforms.Normalize((0.5, 0.5, 0.5),
# (0.5, 0.5, 0.5))]
#
# return transforms.Compose(transform_list)
#
#
# def normalize():
# return transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
#
#
# def __resize(img, w, h, method=Image.BICUBIC):
# return img.resize((w, h), method)
#
#
# def __make_power_2(img, base, method=Image.BICUBIC):
# ow, oh = img.size
# h = int(round(oh / base) * base)
# w = int(round(ow / base) * base)
# if (h == oh) and (w == ow):
# return img
# return img.resize((w, h), method)
#
#
# def __scale_width(img, target_width, method=Image.BICUBIC):
# ow, oh = img.size
# if (ow == target_width):
# return img
# w = target_width
# h = int(target_width * oh / ow)
# return img.resize((w, h), method)
#
#
# def __scale_shortside(img, target_width, method=Image.BICUBIC):
# ow, oh = img.size
# ss, ls = min(ow, oh), max(ow, oh) # shortside and longside
# width_is_shorter = ow == ss
# if (ss == target_width):
# return img
# ls = int(target_width * ls / ss)
# nw, nh = (ss, ls) if width_is_shorter else (ls, ss)
# return img.resize((nw, nh), method)
#
#
# def __crop(img, pos, size):
# ow, oh = img.size
# x1, y1 = pos
# tw = th = size
# return img.crop((x1, y1, x1 + tw, y1 + th))
#
#
# def __flip(img, flip):
# if flip:
# return img.transpose(Image.FLIP_LEFT_RIGHT)
# return img
import torch.utils.data as data
from PIL import Image
import torchvision.transforms as transforms
import numpy as np
import random
class BaseDataset(data.Dataset):
def __init__(self):
super(BaseDataset, self).__init__()
@staticmethod
def modify_commandline_options(parser, is_train):
return parser
def initialize(self, opt):
pass
def get_params(opt, size):
w, h = size
new_h = h
new_w = w
if opt.preprocess_mode == 'resize_and_crop':
new_h = new_w = opt.load_size
elif opt.preprocess_mode == 'scale_width_and_crop':
new_w = opt.load_size
new_h = opt.load_size * h // w
elif opt.preprocess_mode == 'scale_shortside_and_crop':
ss, ls = min(w, h), max(w, h) # shortside and longside
width_is_shorter = w == ss
ls = int(opt.load_size * ls / ss)
new_w, new_h = (ss, ls) if width_is_shorter else (ls, ss)
x = random.randint(0, np.maximum(0, new_w - opt.crop_size))
y = random.randint(0, np.maximum(0, new_h - opt.crop_size))
flip = random.random() > 0.5
return {'crop_pos': (x, y), 'flip': flip}
def get_transform(opt, params, method=Image.BICUBIC, normalize=True, toTensor=True):
transform_list = []
if 'resize' in opt.preprocess_mode:
osize = [opt.load_size, opt.load_size]
transform_list.append(transforms.Resize(osize, interpolation=method))
elif 'scale_width' in opt.preprocess_mode:
transform_list.append(transforms.Lambda(lambda img: __scale_width(img, opt.load_size, method)))
elif 'scale_shortside' in opt.preprocess_mode:
transform_list.append(transforms.Lambda(lambda img: __scale_shortside(img, opt.load_size, method)))
if 'crop' in opt.preprocess_mode:
transform_list.append(transforms.Lambda(lambda img: __crop(img, params['crop_pos'], opt.crop_size)))
if opt.preprocess_mode == 'none':
base = 32
transform_list.append(transforms.Lambda(lambda img: __make_power_2(img, base, method)))
if opt.preprocess_mode == 'fixed':
w = opt.crop_size
h = round(opt.crop_size / opt.aspect_ratio)
transform_list.append(transforms.Lambda(lambda img: __resize(img, w, h, method)))
if opt.isTrain and not opt.no_flip:
transform_list.append(transforms.Lambda(lambda img: __flip(img, params['flip'])))
if toTensor:
transform_list += [transforms.ToTensor()]
if normalize:
transform_list += [transforms.Normalize((0.5, 0.5, 0.5),
(0.5, 0.5, 0.5))]
return transforms.Compose(transform_list)
def normalize():
return transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
def __resize(img, w, h, method=Image.BICUBIC):
return img.resize((w, h), method)
def __make_power_2(img, base, method=Image.BICUBIC):
ow, oh = img.size
h = int(round(oh / base) * base)
w = int(round(ow / base) * base)
if (h == oh) and (w == ow):
return img
return img.resize((w, h), method)
def __scale_width(img, target_width, method=Image.BICUBIC):
ow, oh = img.size
if (ow == target_width):
return img
w = target_width
h = int(target_width * oh / ow)
return img.resize((w, h), method)
def __scale_shortside(img, target_width, method=Image.BICUBIC):
ow, oh = img.size
ss, ls = min(ow, oh), max(ow, oh) # shortside and longside
width_is_shorter = ow == ss
if (ss == target_width):
return img
ls = int(target_width * ls / ss)
nw, nh = (ss, ls) if width_is_shorter else (ls, ss)
return img.resize((nw, nh), method)
def __crop(img, pos, size):
ow, oh = img.size
x1, y1 = pos
tw = th = size
return img.crop((x1, y1, x1 + tw, y1 + th))
def __flip(img, flip):
if flip:
return img.transpose(Image.FLIP_LEFT_RIGHT)
return img |