File size: 26,486 Bytes
83034b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint

from .ViT_helper import to_2tuple, to_ntuple,DropPath

class Mlp(nn.Module):
    """MLP as implemented in timm
    """

    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        drops = to_2tuple(drop)

        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.drop1 = nn.Dropout(drops[0])
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop2 = nn.Dropout(drops[1])

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop1(x)
        x = self.fc2(x)
        x = self.drop2(x)
        return x


class Attention(nn.Module):
    """Self Attention as implemented in timm
    """

    def __init__(self, d_model, nhead=8, qkv_bias=False, attn_drop=0., proj_drop=0.):
        super().__init__()
        assert d_model % nhead == 0, 'd_model needs to be divisible by nhead'
        self.nhead = nhead
        self.scale = (d_model // nhead) ** -0.5

        self.to_qkv = nn.Linear(d_model, d_model * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(d_model, d_model)
        self.proj_drop = nn.Dropout(proj_drop)

    def forward(self, x):
        B, N, C = x.size()
        qkv = self.to_qkv(x).reshape(B, N, 3, self.nhead, C // self.nhead).permute(2, 0, 3, 1, 4)
        q, k, v = qkv.unbind(0)

        attn = (q @ k.transpose(-1, -2)) * self.scale
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)

        x = (attn @ v).transpose(1, 2).reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)

        return x


class Attention_Cross(nn.Module):
    """Attention for decoder layer.Some palce may be called "inter attention"
    """

    def __init__(self, d_model, nhead=8, qkv_bias=False, attn_drop=0., proj_drop=0.):
        super().__init__()
        assert d_model % nhead == 0, 'd_model needs to be divisible by nhead'
        self.nhead = nhead
        self.scale = (d_model // nhead) ** -0.5

        self.to_q = nn.Linear(d_model, d_model, bias=qkv_bias)
        self.to_kv = nn.Linear(d_model, d_model * 2, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(d_model, d_model)
        self.proj_drop = nn.Dropout(proj_drop)

    def forward(self, x, y):
        """
          Args:
            x: output of the former layer
            y: memery of the encoder layer
        """
        B, Nx, C = x.size()
        _, Ny, _ = y.size()
        q = self.to_q(x).reshape(B, Nx, self.nhead, C // self.nhead).permute(0, 2, 1, 3)
        kv = self.to_kv(y).reshape(B, Ny, 2, self.nhead, C // self.nhead).permute(2, 0, 3, 1, 4)
        k, v = kv.unbind(0)

        attn = (q @ k.transpose(-1, -2)) * self.scale
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)

        x = (attn @ v).transpose(1, 2).reshape(B, Nx, C)
        x = self.proj(x)
        x = self.proj_drop(x)

        return x

def split_int(num):
    """Split an integer into 2 integers evenly
    Args:
      num (int): The input integer
    Returns:
      num_1 (int)
      num_2 (int)
    """
    if num % 2 == 0:
        num_1 = num_2 = num // 2
    else:
        num_1 = num // 2
        num_2 = num_1 + 1
    return num_1, num_2


def unpad2D(input, pad):
    """Crop the input tensor according to pad.(Inverse operation for padding)
    Args:
      input (Tensor): (B, C, H, W)
      pad (Tuple of int): (left, right, top, bottom)
    Returns:
      output (Tensor): (B, C, new_H, new_W)
    """
    pad_W_left, pad_W_right, pad_H_top, pad_H_bottom = pad
    if pad_H_top == 0 and pad_H_bottom == 0 and not (pad_W_left == 0 and pad_W_right == 0):
        output = input[:, :, :, pad_W_left:-pad_W_right]
    elif pad_W_left == 0 and pad_W_right == 0 and not (pad_H_top == 0 and pad_H_bottom == 0):
        output = input[:, :, pad_H_top:-pad_H_bottom, :]
    elif pad_H_top == 0 and pad_H_bottom == 0 and pad_W_left == 0 and pad_W_right == 0:
        output = input
    else:
        output = input[:, :, pad_H_top:-pad_H_bottom, pad_W_left:-pad_W_right]
    return output


def seq_padding(x, dividable_size, input_resolution, pad_mode='constant'):
    """Padding for sequential data
    Args:
      x (Tensor): (B, L, C)
      dividable_size (Tuple | int): dividable size
      input_resolution (Tuple): resolution of x
    Returns:
      x (Tensor): (B, new_L, C)
      output_resolution (Tuple): new resolution of x
      pad (Tuple of int): (left, right, top, bottom)
    """
    H, W = input_resolution
    B, L, C = x.shape
    assert L == H * W, 'Input of wrong size.'
    dividable_size = to_2tuple(dividable_size)
    x = x.permute(0, 2, 1).reshape(B, C, H, W)

    rema_H, rema_W = H % dividable_size[0], W % dividable_size[1]
    pad_H, pad_W = dividable_size[0] - rema_H, dividable_size[1] - rema_W

    pad_H_top, pad_H_bottom = split_int(pad_H) if rema_H != 0 else (0, 0)
    pad_W_left, pad_W_right = split_int(pad_W) if rema_W != 0 else (0, 0)

    x = F.pad(x, (pad_W_left, pad_W_right, pad_H_top, pad_H_bottom), pad_mode, 0)

    padded_H, padded_W = x.shape[-2:]
    x = x.reshape(B, C, -1).permute(0, 2, 1)
    return x, (padded_H, padded_W), (pad_W_left, pad_W_right, pad_H_top, pad_H_bottom)


# Example
# x = torch.randn(1, 14, 768)
# y = seq_padding(x, dividable_size=7, input_resolution=(2, 7))
# print(y[0].shape, y[1], y[2])


def seq_unpad(x, input_resolution, pad):
    """Unpadding for sequential data
    Args:
      x (Tensor): (B, L, C)
      input_resolution (Tuple): resolution of x
      pad (Tuple of int): (left, right, top, bottom)
    Returns:
      x (Tensor): (B, new_L, C)
      output_resolution (Tuple): new resolution of x
    """
    padded_H, padded_W = input_resolution
    B, L, C = x.shape
    assert L == padded_H * padded_W, 'Input of wrong size.'
    x = x.permute(0, 2, 1).reshape(B, C, padded_H, padded_W)

    x = unpad2D(x, pad=pad)

    H, W = x.shape[-2:]
    x = x.reshape(B, C, -1).permute(0, 2, 1)
    return x, (H, W)
def window_partition(x, window_size):
    """Slightly modified for arbitrary window_size & resolution combination
    Args:
      x: (B,H,W,C)
      window_size (tuple[int] | int): window size
    Returns:
      windows: (num_windows*B, window_size, window_size, C)
    """
    window_size = to_2tuple(window_size)
    B, H, W, C = x.shape
    n_win_H = H // window_size[0]
    n_win_W = W // window_size[1]
    if not (H % window_size[0] == 0 and W % window_size[1] == 0):
        x = x[:, :n_win_H * window_size[0], :n_win_W * window_size[1], :]
    x = x.view(B, n_win_H, window_size[0], n_win_W, window_size[1], C)
    windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size[0], window_size[1], C)
    return windows


def window_reverse(windows, window_size, H, W):
    """Slightly modified for arbitrary window_size & resolution combination
    Args:
      windows: (num_windows*B, window_size, window_size, C)
      window_size (tuple[int] | int): Window size
      H (int): Height of image
      W (int): Width of image
    Returns:
      x: (B, H, W, C)
    """
    window_size = to_2tuple(window_size)
    n_win_H = H // window_size[0]
    n_win_W = W // window_size[1]
    B = windows.shape[0] // (n_win_H * n_win_W)
    x = windows.view(B, n_win_H, n_win_W, window_size[0], window_size[1], -1)
    x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, n_win_H * window_size[0], n_win_W * window_size[1], -1)
    return x


# Example
# H, W = 6, 6
# window_size = 2
# x = torch.randn(1, H, W, 3)
# win = window_partition(x, window_size=window_size)
# y = window_reverse(win, window_size=window_size, H=H, W=W)
# print(x.shape)
# print(win.shape)
# print(y.shape)
# print(x[0].permute(2,0,1)[0])
# print(y[0].permute(2,0,1)[0])


def seq_crop(x, dividable_size, input_resolution):
    """
    Arg:
      x (Tensor): (B, L, C)
      dividable_size (Tuple | int): dividable size
      input_resolution (Tuple): resolution of x
    Returns:
      x (Tensor): (B, new_L, C)
      output_resolution (Tuple): new resolution of x
    """
    H, W = input_resolution
    B, L, C = x.shape
    assert L == H * W, 'Input of wrong size.'
    dividable_size = to_2tuple(dividable_size)
    x = x.reshape(B, H, W, C)

    rema_H, rema_W = H % dividable_size[0], W % dividable_size[1]
    new_H, new_W = H - rema_H, W - rema_W
    if rema_H != 0 or rema_W != 0:
        x = x[:, :new_H, :new_W, :]

    x = x.reshape(B, -1, C)
    return x, (new_H, new_W)


# Example
# H, W = 22, 34
# x = torch.randn(2, H*W, 96)
# x, new_size = seq_crop(x, dividable_size=7, input_resolution=(H, W))
# print(x.shape, new_size)


class PatchEmbed_Kai(nn.Module):
    """ 2D Image to Patch Embedding
    """

    def __init__(self, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None, flatten=True):
        super().__init__()
        patch_size = to_2tuple(patch_size)
        self.in_chans = in_chans
        self.flatten = flatten

        self.proj = nn.Conv2d(self.in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
        self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()

    def forward(self, x):
        B, C, H, W = x.shape
        assert C == self.in_chans, 'Input image need to have same numbers of channels with the initialed.'
        x = self.proj(x)
        H, W = x.shape[2], x.shape[3]
        if self.flatten:
            x = x.flatten(2).transpose(1, 2)  # BCHW -> BNC
        x = self.norm(x)
        return x, (H, W)


# Example
# model = PatchEmbed_Kai(patch_size=4, in_chans=3, embed_dim=96)
# x = torch.randn(1, 3, 224, 224)
# y = model(x)
# torch.save(model.state_dict(), "./PatchEmbed.pkl")
# print(y[0].shape, y[1])


class PatchMerging_Kai(nn.Module):
    """ Patch Merging Layer.
    Args:
      input_resolution (tuple[int] | int): Resolution of input feature.
      d_model (int): Number of input channels.
      norm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNorm
    """

    def __init__(self, input_resolution, d_model, norm_layer=nn.LayerNorm):
        super().__init__()
        self.input_resolution = to_2tuple(input_resolution)
        self.d_model = d_model
        self.reduction = nn.Linear(4 * d_model, 2 * d_model, bias=False)
        self.norm = norm_layer(4 * d_model)

    def forward(self, x):
        """
        Args:
          x (Tuple): (Tensor, arbitrary_input, (H,W)), arbitrary_input (bool)
            if arbitrary_input=False, (H,W) will not be required
            B, H*W, C -> B, H/2*W/2, 4*C
        """
        arbitrary_input = x[1]
        if arbitrary_input:
            H, W = x[2]
        else:
            H, W = self.input_resolution

        x = x[0]
        B, L, C = x.shape
        assert L == H * W, "input feature has wrong size"

        x = x.view(B, H, W, C)
        if H % 2 != 0:
            x = x[:, 0:-1, :, :]
        if W % 2 != 0:
            x = x[:, :, 0:-1, :]

        x0 = x[:, 0::2, 0::2, :]  # B H/2 W/2 C
        x1 = x[:, 1::2, 0::2, :]  # B H/2 W/2 C
        x2 = x[:, 0::2, 1::2, :]  # B H/2 W/2 C
        x3 = x[:, 1::2, 1::2, :]  # B H/2 W/2 C
        x = torch.cat([x0, x1, x2, x3], -1)  # B H/2 W/2 4*C
        H, W = x.shape[1], x.shape[2]
        x = x.view(B, -1, 4 * C)  # B H/2*W/2 4*C

        x = self.norm(x)
        x = self.reduction(x)

        return x, arbitrary_input, (H, W)


# Example
# model = PatchMerging_Kai(input_resolution=(5,4), d_model=3)
# arbitrary_input = True
# # x = torch.randn(1, 20, 3)
# # y = model((x, arbitrary_input))
# x = torch.randn(1, 45, 3)
# y = model((x, arbitrary_input, (5,9)))
# print(y[0].shape, y[2])


class WindowAttention_Kai(nn.Module):
    def __init__(self, d_model, window_size, nhead, qkv_bias=True, attn_drop=0., proj_drop=0.):
        super().__init__()
        assert d_model % nhead == 0, 'd_model needs to be divisible by nhead'
        self.window_size = to_2tuple(window_size)
        self.nhead = nhead
        self.scale = (d_model // nhead) ** -0.5

        # Relative Position Bias's parameter Table
        self.relative_position_bias_table = nn.Parameter(
            torch.zeros((2 * self.window_size[0] - 1) * (2 * self.window_size[1] - 1), nhead)
        )

        # Compute indice of relative_position_bias_table for attention matrix
        coords_h = torch.arange(self.window_size[0])
        coords_w = torch.arange(self.window_size[1])
        coords = torch.stack(torch.meshgrid([coords_h, coords_w]))
        coords_flatten = torch.flatten(coords, 1)
        relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]
        relative_coords = relative_coords.permute(1, 2, 0).contiguous()
        relative_coords[:, :, 0] += self.window_size[0] - 1
        relative_coords[:, :, 1] += self.window_size[1] - 1
        relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
        relative_position_index = relative_coords.sum(-1)
        self.register_buffer("relative_position_index", relative_position_index)

        self.qkv = nn.Linear(d_model, d_model * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(d_model, d_model)
        self.proj_drop = nn.Dropout(proj_drop)

        nn.init.trunc_normal_(self.relative_position_bias_table, std=.02)

    def forward(self, x, shape):
        H, W = shape
        Bi, Ni, Ci = x.size()
        assert Ni == H * W, "Inputs with wrong size."
        x = x.reshape(Bi, H, W, Ci)

        # print(self.window_size)
        x = window_partition(x, self.window_size)
        x = x.reshape(-1, self.window_size[0] * self.window_size[1], Ci)

        B_, N, C = x.shape
        qkv = self.qkv(x).reshape(B_, N, 3, self.nhead, C // self.nhead).permute(2, 0, 3, 1, 4)
        q, k, v = qkv.unbind(0)

        attn = (q @ k.transpose(-2, -1)) * self.scale

        relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
            self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], self.nhead)
        relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()
        attn = attn + relative_position_bias.unsqueeze(0)

        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)

        x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)

        x = window_reverse(x, self.window_size, H, W)
        x = x.reshape(Bi, Ni, Ci)
        return x

    # Example


# model = WindowAttention_Kai(
#   d_model=768,
#   window_size=7,
#   nhead=8
# )
# x = torch.randn(1, 784, 768)
# y = model(x, shape=(28, 28))
# print(y.shape)


class StripAttention(nn.Module):
    def __init__(self, d_model, nhead=8, strip_width=7, is_vertical=False, qkv_bias=False, attn_drop=0., proj_drop=0.):
        super().__init__()
        self.d_model = d_model
        self.strip_width = strip_width
        self.is_vertical = is_vertical

        self.attn = Attention(
            d_model=d_model,
            nhead=nhead,
            qkv_bias=qkv_bias,
            attn_drop=attn_drop,
            proj_drop=proj_drop,
        )

    def forward(self, x, shape):
        H, W = shape
        B, N, C = x.size()
        assert N == H * W, "Inputs with wrong size."
        x = x.reshape(B, H, W, C)

        # print(self.strip_width)
        if self.is_vertical:
            x = window_partition(x, (H, self.strip_width))
            x = x.reshape(-1, H * self.strip_width, C)
        else:
            x = window_partition(x, (self.strip_width, W))
            x = x.reshape(-1, W * self.strip_width, C)

        wins = self.attn(x)

        if self.is_vertical:
            x = window_reverse(wins, (H, self.strip_width), H, W)
        else:
            x = window_reverse(wins, (self.strip_width, W), H, W)

        x = x.reshape(B, N, C)
        return x


# Example
# model = StripAttention(
#   d_model=768,
#   nhead=8,
#   strip_width=7,
#   is_vertical=False
# )
# x = torch.randn(1, 784, 768)
# y = model(x, (28, 28))
# print(y.shape)


class StripAttentionBlock(nn.Module):
    def __init__(self, d_model, input_resolution, nhead=8, strip_width=7,
                 mlp_ratio=4, qkv_bias=False, drop=0., attn_drop=0., drop_path=0.,
                 act_layer=nn.GELU, norm_layer=nn.LayerNorm):
        super().__init__()
        self.d_model = d_model
        self.input_resolution = to_2tuple(input_resolution)
        self.strip_width = strip_width

        self.norm1 = norm_layer(d_model)

        self.attn1 = StripAttention(
            d_model=d_model,
            nhead=nhead,
            strip_width=strip_width,
            is_vertical=False,
            qkv_bias=qkv_bias,
            attn_drop=attn_drop,
            proj_drop=drop
        )
        self.attn2 = StripAttention(
            d_model=d_model,
            nhead=nhead,
            strip_width=strip_width,
            is_vertical=True,
            qkv_bias=qkv_bias,
            attn_drop=attn_drop,
            proj_drop=drop
        )
        self.attn3 = WindowAttention_Kai(
            d_model=d_model,
            window_size=(strip_width * 2, strip_width * 2),
            nhead=nhead,
            qkv_bias=qkv_bias,
            attn_drop=attn_drop,
            proj_drop=drop
        )

        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.norm2 = norm_layer(d_model)
        mlp_hidden_dim = int(d_model * mlp_ratio)
        self.mlp = Mlp(d_model, hidden_features=mlp_hidden_dim, out_features=d_model, act_layer=act_layer, drop=drop)

    def forward(self, x):
        arbitrary_input = x[1]
        if arbitrary_input:
            H, W = x[2]
            # x, (H, W) = seq_crop(x[0], dividable_size=self.strip_width*2, input_resolution=(H, W))
            x, (H, W), pad = seq_padding(x[0], dividable_size=self.strip_width * 2, input_resolution=(H, W),
                                         pad_mode='constant')
        else:
            H, W = self.input_resolution
            x = x[0]

        B, L, C = x.shape
        assert L == H * W, "input feature has wrong size"

        shortcut = x
        x = self.norm1(x)

        x1 = self.attn1(x, shape=(H, W))
        x2 = self.attn2(x, shape=(H, W))
        x3 = self.attn3(x, shape=(H, W))

        # Method 1
        # x = x1 + x2 + x3
        # Method 2
        q_x = x.unsqueeze(dim=2)
        k_x = torch.stack([x, x1, x2, x3], dim=2)
        attn_x = (q_x @ k_x.transpose(-1, -2)).softmax(dim=-1)
        x = attn_x @ k_x
        x = x.squeeze(dim=2)
        x = shortcut + self.drop_path(x)

        # FFN
        x = x + self.drop_path(self.mlp(self.norm2(x)))

        if arbitrary_input:
            x, (H, W) = seq_unpad(x, (H, W), pad)

        return (x, arbitrary_input, (H, W))


# Example
# model = StripAttentionBlock(
#   d_model=96,
#   input_resolution=28,
#   nhead=8,
#   strip_width=7
# )
# arbitrary_input = True
# # x = (torch.randn(1, 784, 96), arbitrary_input, (28,28))
# # y = model(x)
# x = (torch.randn(1, 840, 96), arbitrary_input, (28, 30))
# y = model(x)
# print(y[0].shape, y[2])


class BasicLayer_SA(nn.Module):
    def __init__(self, d_model, input_resolution, depth, nhead, strip_width,
                 mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0.,
                 drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False):
        super().__init__()
        self.d_model = d_model
        self.input_resolution = to_2tuple(input_resolution)
        self.depth = depth
        self.strip_width = list(to_ntuple(self.depth)(strip_width))
        self.use_checkpoint = use_checkpoint

        # build blocks
        self.blocks = nn.ModuleList([
            StripAttentionBlock(
                d_model=d_model,
                input_resolution=self.input_resolution,
                nhead=nhead,
                strip_width=self.strip_width[i],
                mlp_ratio=mlp_ratio,
                qkv_bias=qkv_bias,
                drop=drop,
                attn_drop=attn_drop,
                drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
                norm_layer=norm_layer
            )
            for i in range(self.depth)
        ])

        # patch merging layer
        if downsample is not None:
            self.downsample = downsample(self.input_resolution, d_model=d_model, norm_layer=norm_layer)
        else:
            self.downsample = None

    def forward(self, x):
        for blk in self.blocks:
            if self.use_checkpoint:
                x = checkpoint.checkpoint(blk, x)
            else:
                x = blk(x)
        # print(x[0].shape, x[1], x[2])
        if self.downsample is not None:
            x = self.downsample(x)
        return x


# Example
# model = BasicLayer_SA(
#   d_model=768,
#   input_resolution=112,
#   depth=3,
#   nhead=8,
#   strip_width=[7, 2, 7],
#   drop_path=0.,
#   downsample=PatchMerging_Kai,
#   use_checkpoint=False
# )
# arbitrary_input = True
# # x = (torch.randn(1, 12544, 768), arbitrary_input, (112,112))
# # y = model(x)
# x = (torch.randn(1, 810, 768), arbitrary_input, (27,30))
# y = model(x)
# print(y[0].shape, y[2])

########################################## S2WAT ##########################################

class HeTransformerEncoder(nn.Module):
    def __init__(self, img_size=224, patch_size=4, in_chans=3,
                 embed_dim=96, depths=[2, 2, 6, 2], nhead=[3, 6, 12, 24],
                 strip_width=7, mlp_ratio=4., qkv_bias=True,
                 drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1,
                 norm_layer=nn.LayerNorm, ape=False, patch_norm=True,
                 use_checkpoint=False):
        super().__init__()

        self.img_size = to_2tuple(img_size)
        self.patch_size = to_2tuple(patch_size)
        self.num_layers = len(depths)
        self.strip_width = list(to_ntuple(self.num_layers)(strip_width))
        self.embed_dim = embed_dim
        self.ape = ape
        self.printed_modes = set()
        self.patch_norm = patch_norm
        self.device="cuda" if torch.cuda.is_available() else "cpu"

        # split image into non-overlapping patches
        self.patch_embed = PatchEmbed_Kai(
            patch_size=patch_size,
            in_chans=in_chans,
            embed_dim=embed_dim,
            norm_layer=norm_layer if self.patch_norm else None
        )
        self.patches_resolution = (self.img_size[0] // self.patch_size[0], self.img_size[1] // self.patch_size[1])
        self.num_patches = self.patches_resolution[0] * self.patches_resolution[1]

        # absolute position embedding
        if self.ape:
            self.absolute_pos_embed = nn.Parameter(torch.zeros(1, self.num_patches, embed_dim))
            nn.init.trunc_normal_(self.absolute_pos_embed, std=.02)
        self.pos_drop = nn.Dropout(drop_rate)

        # stochastic depth
        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]  # stochastic depth decay rule

        # build layers
        self.layers = nn.ModuleList()
        for i in range(self.num_layers):
            layer = BasicLayer_SA(
                d_model=int(self.embed_dim * 2 ** i),
                input_resolution=(self.patches_resolution[0] // (2 ** i),
                                  self.patches_resolution[1] // (2 ** i)),
                depth=depths[i],
                nhead=nhead[i],
                strip_width=self.strip_width[i],
                mlp_ratio=mlp_ratio,
                qkv_bias=qkv_bias,
                drop=drop_rate,
                attn_drop=attn_drop_rate,
                drop_path=dpr[sum(depths[:i]):sum(depths[:i + 1])],
                norm_layer=norm_layer,
                downsample=PatchMerging_Kai if (i < self.num_layers - 1) else None,
                use_checkpoint=use_checkpoint
            )
            self.layers.append(layer)

        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            nn.init.trunc_normal_(m.weight, std=.02)
            if m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    @torch.jit.ignore
    def no_weight_decay(self):
        return {'absolute_pos_embed'}

    @torch.jit.ignore
    def no_weight_decay_keywords(self):
        return {'relative_position_bias_table'}


    def add_z(self, x, alpha, mode):
        if mode not in self.printed_modes:
            if mode == 1:
                print("Using Hadamard Product => Element-wise multiplication")
            elif mode == 2:
                print("Using Addition")
            elif mode == 3:
                print("Joint Embedding (concatenation along a new dimension)")
            else:
                raise ValueError("Invalid mode. Please choose 1, 2, or 3")

            self.printed_modes.add(mode)

        size = x[0].size()
        alpha_exp = alpha.expand(size)

        if mode == 1:
            x_concat_alpha = x[0].to(self.device) * alpha_exp.to(self.device)
        elif mode == 2:
            x_concat_alpha = x[0].to(self.device) + alpha_exp.to(self.device)
        elif mode == 3:
            x_concat_alpha = torch.cat((x[0].to(self.device), alpha_exp.to(self.device)))
        else:
            raise ValueError("Invalid mode. Please choose 1, 2, or 3")

        return x_concat_alpha.to(self.device)


    def forward_features(self, x,alpha,mode):
        x, arbitrary_input = x[0], x[1]
        x, (H, W) = self.patch_embed(x)
        if self.ape:
            x = x + self.absolute_pos_embed
        x = self.pos_drop(x)

        x = (x, arbitrary_input, (H, W))
        for layer in self.layers:
            x = layer(x)
            x = (self.add_z(x, alpha, mode), x[1], x[2])

        return x

    def forward(self, x,arbitrary_input=False,alpha=None,mode=2):
        if arbitrary_input:
            H, W = x.shape[2], x.shape[3]
            x = (x, arbitrary_input, (H, W))
        else:
            x = (x, arbitrary_input)

        x = self.forward_features(x,alpha,mode)

        return x