File size: 3,093 Bytes
83034b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import re
import torch.nn as nn
from models.networks.sync_batchnorm import SynchronizedBatchNorm2d
import torch.nn.utils.spectral_norm as spectral_norm


# Returns a function that creates a standard normalization function
def get_norm_layer(opt, norm_type='instance'):
    # helper function to get # output channels of the previous layer
    def get_out_channel(layer):
        if hasattr(layer, 'out_channels'):
            return getattr(layer, 'out_channels')
        return layer.weight.size(0)

    # this function will be returned
    def add_norm_layer(layer):
        nonlocal norm_type
        if norm_type.startswith('spectral'):
            layer = spectral_norm(layer)
            subnorm_type = norm_type[len('spectral'):]

        if subnorm_type == 'none' or len(subnorm_type) == 0:
            return layer

        # remove bias in the previous layer, which is meaningless
        # since it has no effect after normalization
        if getattr(layer, 'bias', None) is not None:
            delattr(layer, 'bias')
            layer.register_parameter('bias', None)

        if subnorm_type == 'batch':
            norm_layer = nn.BatchNorm2d(get_out_channel(layer), affine=True)
        elif subnorm_type == 'syncbatch':
            norm_layer = SynchronizedBatchNorm2d(get_out_channel(layer), affine=True)
        elif subnorm_type == 'instance':
            norm_layer = nn.InstanceNorm2d(get_out_channel(layer), affine=False)
        else:
            raise ValueError('normalization layer %s is not recognized' % subnorm_type)

        return nn.Sequential(layer, norm_layer)

    return add_norm_layer


# Creates FADE normalization layer based on the given configuration
class FADE(nn.Module):
    def __init__(self, config_text, norm_nc, label_nc):
        super().__init__()

        assert config_text.startswith('fade')
        parsed = re.search('fade(\D+)(\d)x\d', config_text)
        param_free_norm_type = str(parsed.group(1))
        ks = int(parsed.group(2))

        if param_free_norm_type == 'instance':
            self.param_free_norm = nn.InstanceNorm2d(norm_nc, affine=False)
        elif param_free_norm_type == 'syncbatch':
            self.param_free_norm = SynchronizedBatchNorm2d(norm_nc, affine=False)
        elif param_free_norm_type == 'batch':
            self.param_free_norm = nn.BatchNorm2d(norm_nc, affine=False)
        else:
            raise ValueError('%s is not a recognized param-free norm type in FADE'
                             % param_free_norm_type)

        pw = ks // 2
        self.mlp_gamma = nn.Conv2d(label_nc, norm_nc, kernel_size=ks, padding=pw)
        self.mlp_beta = nn.Conv2d(label_nc, norm_nc, kernel_size=ks, padding=pw)

    def forward(self, x, feat):
        # Step 1. generate parameter-free normalized activations
        normalized = self.param_free_norm(x)

        # Step 2. produce scale and bias conditioned on feature map
        gamma = self.mlp_gamma(feat)
        beta = self.mlp_beta(feat)

        # Step 3. apply scale and bias
        out = normalized * (1 + gamma) + beta

        return out