File size: 22,427 Bytes
83034b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
import torch

import models.networks as networks
import util.util as util
import util.logging_wandb as wblogging
import os
import numpy as np
import torch.nn.functional as F
from tqdm import tqdm
from torchvision.utils import save_image
import torch.nn as nn
import torchvision.transforms as transforms
import torch.utils.data as data_torch
from torch.utils.data import Dataset
from .sampler import InfiniteSamplerWrapper,save_checkpoint
from .networks.generator_module.schedule import CosineAnnealingWarmUpLR
import torch.utils.data as data
from rich.progress import Progress, TimeRemainingColumn, BarColumn, TextColumn
import datetime

class Pix2PixModel(torch.nn.Module):
    @staticmethod
    def modify_commandline_options(parser, is_train):
        networks.modify_commandline_options(parser, is_train)
        parser.add_argument('--lrG_decay', type=float, default=1e-4, help='learning rate decay')
        parser.add_argument('--lrG', type=float, default=12e-4, help='initial learning rate for adam')
        parser.add_argument('--save_dir', default=r'/home/share/VAL_ImgTranslations/experiments',
                            help='Directory to save the model')
        parser.add_argument('--content_weight', type=float, default=2.0, help='weight for content reconstruction loss')
        parser.add_argument('--save_model_interval', type=int, default=300)
        parser.add_argument('--style_weight', type=float, default=3.0, help='weight for style reconstruction loss')
        parser.add_argument('--max_iter', type=int, default=700)
        parser.add_argument('--n_threads', type=int, default=1)
        parser.add_argument('--batch_size', type=int, default=1)
        parser.add_argument('--id1_weight', type=float, default=50)
        parser.add_argument('--id2_weight', type=float, default=1)
        parser.add_argument('--loss_count_interval', type=int, default=200)
        return parser

    def __init__(self, opt):
        super().__init__()
        self.opt = opt
        self.loss=0
        self.out=None
        self.content_weight=opt.content_weight
        self.style_weight=opt.style_weight
        self.lrG_decay=opt.lrG_decay
        self.lrG=opt.lrG
        self.loss_count_interval=opt.loss_count_interval
        self.save_model_interval=opt.save_model_interval
        self.n_threads=opt.n_threads
        self.save_dir=opt.save_dir
        self.id1_weight=opt.id1_weight
        self.id2_weight=opt.id2_weight
        self.max_iter=opt.max_iter
        self.epoch=0
        self.batch_size=opt.batch_size
        self.FloatTensor = torch.cuda.FloatTensor if self.use_gpu() \
            else torch.FloatTensor
        self.ByteTensor = torch.cuda.ByteTensor if self.use_gpu() \
            else torch.ByteTensor

        self.netG, self.netD,self.netD2, self.netE = self.initialize_networks(opt)
        self.device="cuda" if torch.cuda.is_available() else "cpu"

        # set loss functions
        if opt.isTrain:
            self.criterionGAN = networks.GANLoss(
                opt.gan_mode, tensor=self.FloatTensor, opt=self.opt)
            self.criterionFeat = torch.nn.L1Loss()
            if not opt.no_vgg_loss:
                self.criterionVGG = networks.VGGLoss(self.opt.gpu_ids)
            if opt.use_vae:
                self.KLDLoss = networks.KLDLoss()

    # Entry point for all calls involving forward pass
    # of deep networks. We used this approach since DataParallel module
    # can't parallelize custom functions, we branch to different
    # routines based on |mode|.
    def forward(self, data, mode,iters,progress,epochs,images_iters):
        input_semantics, real_image = self.preprocess_input(data)
        # print("input_semantics: ", input_semantics)
        # print("real_image: ", real_image.shape)
        if mode == 'generator':
            g_loss, generated = self.compute_generator_loss(input_semantics, real_image,iters=iters,progress=progress,epoch_model=epochs,images_iter=images_iters)
            return g_loss, generated
        elif mode == 'discriminator':
            d_loss, d2_loss = self.compute_discriminator_loss(input_semantics, real_image,iters=iters)
            return d_loss, d2_loss
        elif mode == 'encode_only':
            z, mu, logvar = self.encode_z(real_image)
            return mu, logvar
        elif mode == 'inference':
            contents = F.interpolate(real_image, size=(224, 224), mode='bilinear', align_corners=False)
            styles = F.interpolate(input_semantics, size=(224, 224), mode='bilinear', align_corners=False)
            model = self.generate_fake(contents, styles, iters, mode="gen",progress=None)
            with torch.no_grad():
                self.opt.alpha = self.opt.alpha.to(self.device)
                _, _, _, _, output = model(contents, styles)
                print("OUTPUT",output.shape)
            upsample_layer = nn.Sequential(nn.Upsample(scale_factor=8 / 7, mode='bilinear', align_corners=False))
            fake_image = upsample_layer(output)
            return fake_image
        else:
            raise ValueError("|mode| is invalid")

    def create_optimizers(self, opt):
        G_params = list(self.netG.parameters())
        if opt.use_vae:
            G_params += list(self.netE.parameters())
        if opt.isTrain:
            D_params = list(self.netD.parameters())
            D2_params = list(self.netD2.parameters())

        if opt.no_TTUR:
            beta1, beta2 = opt.beta1, opt.beta2
            G_lr, D_lr = opt.lr, opt.lr
        else:
            beta1, beta2 = 0, 0.9
            G_lr, D_lr = opt.lr / 2, opt.lr * 2

        optimizer_G = torch.optim.Adam(G_params, lr=G_lr, betas=(beta1, beta2))
        optimizer_D = torch.optim.Adam(D_params, lr=D_lr, betas=(beta1, beta2))
        optimizer_D2 = torch.optim.Adam(D2_params, lr=D_lr, betas=(beta1, beta2))

        return optimizer_G, optimizer_D, optimizer_D2

    def save(self, epoch):
        util.save_network(self.netG, 'G', epoch, self.opt)
        util.save_network(self.netD, 'D', epoch, self.opt)
        util.save_network(self.netD2, 'D2', epoch, self.opt)
        if self.opt.use_vae:
            util.save_network(self.netE, 'E', epoch, self.opt)

    ############################################################################
    # Private helper methods
    ############################################################################

    def initialize_networks(self, opt):
        netG = networks.define_G(opt)
        netD = networks.define_D(opt) if opt.isTrain else None
        netD2 = networks.define_D(opt) if opt.isTrain else None
        netE = networks.define_E(opt) if opt.use_vae else None

        if not opt.isTrain or opt.continue_train:
            netG = util.load_network(netG, 'G', opt.which_epoch, opt)
            if opt.isTrain:
                netD = util.load_network(netD, 'D', opt.which_epoch, opt)
                netD2 = util.load_network(netD2, 'D2', opt.which_epoch, opt)
            if opt.use_vae:
                netE = util.load_network(netE, 'E', opt.which_epoch, opt)

        return netG, netD, netD2, netE

    # preprocess the input, such as moving the tensors to GPUs
    # and transforming the label map to one-hot encoding (for SIS)
    # |data|: dictionary of the input data
    def preprocess_input(self, data):
        # move to GPU and change data types
        if self.opt.task == 'SIS':
            data['label'] = data['label'].long()
        if self.use_gpu():
            data['label'] = data['label'].cuda()
            if 'instance' in data:
                try:
                    data['instance'] = data['instance'].cuda()
                except:
                    data['instance'] = data['instance']
            else:
                data['instance'] = None  # or handle as appropriate for your model

            data['image'] = data['image'].cuda()

        # create one-hot label map for SIS
        if self.opt.task == 'SIS':
            label_map = data['label']
            bs, _, h, w = label_map.size()
            nc = self.opt.label_nc + 1 if self.opt.contain_dontcare_label \
                else self.opt.label_nc
            input_label = self.FloatTensor(bs, nc, h, w).zero_()
            input_semantics = input_label.scatter_(1, label_map, 1.0)

            # concatenate instance map if it exists
            if not self.opt.no_instance:
                inst_map = data['instance']
                instance_edge_map = self.get_edges(inst_map)
                input_semantics = torch.cat((input_semantics, instance_edge_map), dim=1)
        else:
            input_semantics = data['label']

        return input_semantics, data['image']

    def compute_generator_loss(self, content, style,iters,progress,epoch_model,images_iter):
        G_losses = {}

        fake_image, loss_StyTr2 = self.generate_fake(content, style,iters=iters,progress=progress,epochs=epoch_model,image_iters=images_iter)
        pred_fake, pred_real_c = self.discriminate(fake_image, content)

        # # computer loss using Discriminator 1
        G_losses['GAN'] = self.criterionGAN(pred_fake, True, for_discriminator=False) * (1 - self.opt.alpha)

        # computer loss using Discriminator 2
        pred_fake, pred_real = self.discriminate(fake_image, style, type='D2')
        G_losses['GAN'] = self.criterionGAN(pred_fake, True, for_discriminator=False) * self.opt.alpha

        if self.opt.task == 'SIS':
            pred_fake, pred_real = self.discriminate(fake_image, style, content)
        else:
            pred_fake, pred_real = self.discriminate(fake_image, style)

        G_losses['GAN'] = self.criterionGAN(pred_fake, True,for_discriminator=False)
        gan_loss_value = G_losses['GAN'].item()
        new_GAN_loss = gan_loss_value + loss_StyTr2
        G_losses['GAN'] = torch.tensor([new_GAN_loss], device=self.device)

        if not self.opt.no_ganFeat_loss:
            num_D = len(pred_fake)
            GAN_Feat_loss = torch.tensor(0.0, dtype=torch.float32, device=self.device)
            for i in range(num_D):  # for each discriminator
                # last output is the final prediction, so we exclude it
                num_intermediate_outputs = len(pred_fake[i]) - 1
                for j in range(num_intermediate_outputs):  # for each layer output
                    unweighted_loss = self.criterionFeat(
                        pred_fake[i][j], pred_real[i][j].detach())
                    GAN_Feat_loss += unweighted_loss * self.opt.lambda_feat / num_D
            G_losses['GAN_Feat'] = GAN_Feat_loss

        if not self.opt.no_vgg_loss:
            target = style if self.opt.task == 'SIS' else content
            G_losses['VGG'] = self.criterionVGG(fake_image, target) * self.opt.lambda_vgg

        return G_losses, fake_image

    def compute_discriminator_loss(self, content, style,iters):
        D_losses = {}
        D2_losses = {}
        contents = F.interpolate(content, size=(224, 224), mode='bilinear', align_corners=False)
        styles = F.interpolate(style, size=(224, 224), mode='bilinear', align_corners=False)
        model=self.generate_fake(contents,styles,iters,mode="gen",progress=None)
        with torch.no_grad():
            _, _, _, _, output=model(contents,styles)
        upsample_layer = nn.Sequential(nn.Upsample(scale_factor=8 / 7, mode='bilinear', align_corners=False))
        fake_image = upsample_layer(output)

        # For Discriminator 1 between fake and content
        pred_fake, pred_real = self.discriminate(fake_image, content)
        D_losses['D_Fake'] = self.criterionGAN(pred_fake, False, for_discriminator=True) * (1 - self.opt.alpha)
        D_losses['D_real'] = self.criterionGAN(pred_real, True, for_discriminator=True)

        pred_fake, pred_real = self.discriminate(fake_image, style, type='D2')
        D2_losses['D_Fake'] = self.criterionGAN(pred_fake, False, for_discriminator=True) * self.opt.alpha
        D2_losses['D_real'] = self.criterionGAN(pred_real, True, for_discriminator=True)

        return D_losses, D2_losses

    def encode_z(self, real_image):
        mu, logvar = self.netE(real_image)
        z = self.reparameterize(mu, logvar)
        return z, mu, logvar

    def custom_epoch(self, curr_index_image):
        if curr_index_image <= 5:
            return self.max_iter
        elif 5 < curr_index_image < 15:
            return int(self.max_iter * 0.6)
        elif 15 <= curr_index_image < 25:
            return int(self.max_iter * 0.55)
        elif 25 <= curr_index_image < 40:
            return int(self.max_iter * 0.5)
        elif 40 <= curr_index_image < 60:
            return int(self.max_iter * 0.375)
        elif 60 <= curr_index_image < 80:
            return int(self.max_iter * 0.25)
        elif 80 <= curr_index_image < 120:
            return int(self.max_iter * 0.1)
        else:
            return int(self.max_iter * 0.05)

    def save_generator_weights_by_iters(self,net, label, epoch,iters):
        util.save_generator_by_iter(net,label,epoch,iters,self.opt)
    def generate_fake(self, input_semantics, real_image, iters,mode="train",progress=None,epochs=None,image_iters=None):
        ### FOR GENERATE-FAKE IMAGES
        if mode == "train":
            models_Generator = self.netG()
            optimizer = torch.optim.Adam([
                {'params': models_Generator.SEencoder.parameters()},
                {'params': models_Generator.decoder.parameters()},
                {'params': models_Generator.transModule.parameters()},
            ], lr=self.lrG_decay)
            scheduler = CosineAnnealingWarmUpLR(optimizer, warmup_step=self.max_iter // 4, max_step=self.max_iter,
                                                min_lr=0)

            contents = real_image.to(self.device)
            style = input_semantics.to(self.device)

            content_images = F.interpolate(contents, size=(224, 224), mode='bilinear', align_corners=False)
            style_images = F.interpolate(style, size=(224, 224), mode='bilinear', align_corners=False)
            total_loss = 0


            # Mở file ghi log
            log_file = open("train_log.txt", "a")

            with progress:
                task = progress.add_task(
                    f"[green]Iters on one Images [{iters}|{self.custom_epoch(iters)}]- Total_Loss: {total_loss}",
                    total=self.custom_epoch(iters)
                )
                total_i = 0
                step_wb=0

                for i in range(self.custom_epoch(curr_index_image=iters)):
                    # Cộng dồn giá trị i vào tổng
                    if (i-self.custom_epoch(curr_index_image=iters)):
                        total_i=i
                        step_wb+=1
                    if (step_wb>=1):
                        total_i=total_i+1


                    loss_c, loss_s, loss_id_1, loss_id_2, out = models_Generator(content_images, style_images)
                    self.out = out
                    loss_all = (self.content_weight * loss_c + self.style_weight * loss_s +
                                self.id1_weight * loss_id_1 + self.id2_weight * loss_id_2)

                    # Tính tổng loss
                    total_loss = round(float(loss_all.sum().cpu().detach().numpy()), 3)
                    print("Loss_model", loss_all.sum().cpu().detach().numpy(), "==>Content_Loss",
                          loss_c.sum().cpu().detach().numpy(),
                          "==>Style_Loss", loss_s.sum().cpu().detach().numpy(), "==>ID_1_Loss",
                          loss_id_1.sum().cpu().detach().numpy(),
                          "==>ID_2_Loss", loss_id_2.sum().cpu().detach().numpy())

                    #### WANDB ONE IMAGES
                    # wblogging.upload_all_loss_on_one_images(loss_value=total_loss, iters_all_images=image_iters,
                    #                                         iters_one_imgs=total_i, epoch=epochs)
                    # wblogging.upload_l1_loss_on_one_images(
                    #     loss_value=round(float(loss_id_1.sum().cpu().detach().numpy()), 3),
                    #     iters_all_images=image_iters, iters_one_imgs=total_i, epoch=epochs)
                    # wblogging.upload_l2_loss_on_one_images(
                    #     loss_value=round(float(loss_id_2.sum().cpu().detach().numpy()), 3),
                    #     iters_all_images=image_iters, iters_one_imgs=total_i, epoch=epochs)
                    # wblogging.upload_content_loss_on_one_images(
                    #     loss_value=round(float(loss_c.sum().cpu().detach().numpy()), 3),
                    #     iters_all_images=image_iters, iters_one_imgs=total_i, epoch=epochs)
                    # wblogging.upload_style_loss_on_one_images(
                    #     loss_value=round(float(loss_s.sum().cpu().detach().numpy()), 3),
                    #     iters_all_images=image_iters, iters_one_imgs=total_i, epoch=epochs)

                    current_lr = optimizer.param_groups[0]['lr']
                    wblogging.upload_lr(current_lr, epoch=epochs)

                    ### END LOGGING ON ONE IMAGES

                    # Lấy thời gian hiện tại với format [ss/mm/hh/dd/mm/yyyy]
                    current_time = datetime.datetime.now().strftime("[%S-%M-%H-%d-%m-%Y]")

                    # Ghi log vào file
                    log_file.write(
                        f"{current_time} Iter: {i}, Total Loss: {total_loss}, Content Loss: {loss_c.sum().cpu().detach().numpy()}, "
                        f"Style Loss: {loss_s.sum().cpu().detach().numpy()}, ID1 Loss: {loss_id_1.sum().cpu().detach().numpy()}, "
                        f"ID2 Loss: {loss_id_2.sum().cpu().detach().numpy()}\n")


                    progress.update(task, advance=1,
                                    description=f"[green]Iters on one Images [{i + 1}|{self.custom_epoch(iters)}]- Total_Loss: {total_loss}")

                    # Update parameters
                    optimizer.zero_grad()
                    loss_all.backward()
                    optimizer.step()
                    scheduler.step()

                    # SAVE Weight by Iters
                    if ((i + 1) - (self.custom_epoch(curr_index_image=iters))) == 0:
                        self.save_generator_weights_by_iters(self.netG, 'G', epoch=self.epoch, iters=i + 1)

                    if i % 100 == 0:
                        output_name = f'{self.save_dir}/test/{str(i)}.jpg'
                        out = torch.cat((content_images, out), 0)
                        out = torch.cat((style_images, out), 0)
                        save_image(out, output_name)

            # Đóng file log sau khi kết thúc
            log_file.close()

            # #### WANDB ALL IMAGES
            # wblogging.upload_loss_all(loss_all=total_loss, iters=image_iters, epoch=epochs)
            # wblogging.upload_l1_loss_all(loss_values=round(float(loss_id_1.sum().cpu().detach().numpy()), 3),
            #                              iters_images=image_iters, epoch=epochs)
            # wblogging.upload_l2_loss(loss_values=round(float(loss_id_2.sum().cpu().detach().numpy()), 3),
            #                              iters=image_iters, epoch=epochs)
            # wblogging.upload_content_loss(loss_c=round(float(loss_c.sum().cpu().detach().numpy()), 3),
            #                          iters=image_iters, epoch=epochs)
            # wblogging.upload_style_loss(loss_s=round(float(loss_id_2.sum().cpu().detach().numpy()), 3),
            #                          iters=image_iters, epoch=epochs)
            ### END WANDB ON ALL IMAGES

            upsample_layer = nn.Sequential(nn.Upsample(scale_factor=8 / 7, mode='bilinear', align_corners=False))
            out = upsample_layer(self.out)

            return out, self.loss

        # FOR GENERATOR IMAGES - VAL
        if(mode=="gen"):
            models_Generator = self.netG()
            models_Generator.eval()
            models_Generator.to(self.device)
            return models_Generator


    # Given fake and real image, return the prediction of discriminator
    # for each fake and real image. The condition is used in SIS.
    def discriminate(self, fake_image, real_image, condition=None,type='D1'):
        if self.opt.task == 'SIS':
            assert condition is not None
            fake_concat = torch.cat([condition, fake_image], dim=1)
            real_concat = torch.cat([condition, real_image], dim=1)
        else:
            assert condition is None
            fake_concat = fake_image
            real_concat = real_image

        # In Batch Normalization, the fake and real images are
        # recommended to be in the same batch to avoid disparate
        # statistics in fake and real images.
        # So both fake and real images are fed to D all at once.
        fake_and_real = torch.cat([fake_concat, real_concat], dim=0)

        if type == 'D1':
            discriminator_out = self.netD(fake_and_real)
        else:
            discriminator_out = self.netD2(fake_and_real)

        pred_fake, pred_real = self.divide_pred(discriminator_out)

        return pred_fake, pred_real

    # Take the prediction of fake and real images from the combined batch
    def divide_pred(self, pred):
        # the prediction contains the intermediate outputs of multi-scale GAN,
        # so it's usually a list
        if type(pred) == list:
            fake = []
            real = []
            for p in pred:
                fake.append([tensor[:tensor.size(0) // 2] for tensor in p])
                real.append([tensor[tensor.size(0) // 2:] for tensor in p])
        else:
            fake = pred[:pred.size(0) // 2]
            real = pred[pred.size(0) // 2:]

        return fake, real

    def get_edges(self, t):
        edge = self.ByteTensor(t.size()).zero_()
        edge[:, :, :, 1:] = edge[:, :, :, 1:] | (t[:, :, :, 1:] != t[:, :, :, :-1])
        edge[:, :, :, :-1] = edge[:, :, :, :-1] | (t[:, :, :, 1:] != t[:, :, :, :-1])
        edge[:, :, 1:, :] = edge[:, :, 1:, :] | (t[:, :, 1:, :] != t[:, :, :-1, :])
        edge[:, :, :-1, :] = edge[:, :, :-1, :] | (t[:, :, 1:, :] != t[:, :, :-1, :])
        return edge.float()

    def reparameterize(self, mu, logvar):
        std = torch.exp(0.5 * logvar)
        eps = torch.randn_like(std)
        return eps.mul(std) + mu

    def use_gpu(self):
        return len(self.opt.gpu_ids) > 0