File size: 4,940 Bytes
83034b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import sys
from collections import OrderedDict
from rich.progress import Progress, TextColumn, BarColumn, TaskProgressColumn, TimeRemainingColumn

import data
from options.train_options import TrainOptions
from util.iter_counter import IterationCounter
from util.visualizer import Visualizer
from trainers.pix2pix_trainer import Pix2PixTrainer
from util.logging_wandb import init_project,stop
import torch
from torch.distributions import Beta

# parse options
opt = TrainOptions().parse()
# print options to help debugging
print(' '.join(sys.argv))

# load the dataset
dataloader = data.create_dataloader(opt)

# create trainer for our model
trainer = Pix2PixTrainer(opt)
print(trainer)

# create tool for counting iterations
iter_counter = IterationCounter(opt, len(dataloader))

# create tool for visualization
visualizer = Visualizer(opt)
T = len(dataloader)
b = torch.tensor([1], dtype=torch.float32)

# Setup rich progress bar
progress = Progress(
    TextColumn("[bold blue]{task.description}"),
    BarColumn(),
    TaskProgressColumn(),
    TimeRemainingColumn(),
)

## INIT WANDB
init_project("results")

epoch = 0
with progress:
    epoch_task = progress.add_task(f"[deep_pink4]Total Epochs[{epoch + 1}|{max(iter_counter.training_epochs())}]",
                                   total=len(iter_counter.training_epochs()))
    for epoch in iter_counter.training_epochs():
        iter_counter.record_epoch_start(epoch)
        progress.update(epoch_task, advance=1)
        img_index = 0
        iter_task = progress.add_task(f"[cyan]Images Index [{img_index}]", total=len(dataloader))

        iteration = 0
        while iteration < len(dataloader):
            for i,data_i in enumerate(dataloader,start=iter_counter.epoch_iter):  # This will loop indefinitely if using InfiniteSamplerWrapper
                iter_counter.record_one_iteration()
                progress.update(iter_task, advance=1)

                t = iteration + 1
                a = torch.tensor(((t - (0.5 * T)) / (0.25 * T)), dtype=torch.float32).exp()
                m = Beta(a, b)
                opt.alpha = m.sample().cuda()

                # Training
                # train generator
                if iteration % opt.D_steps_per_G == 0:
                    trainer.run_generator_one_step(data_i, iteration, progress=progress, epoch=epoch,
                                                   images_iter=img_index)
                    img_index += 1
                    progress.update(iter_task,
                                    description=f"[cyan]Images Index [{img_index}|{len(dataloader)}]")

                # train discriminator
                trainer.run_discriminator_one_step(data_i, iteration)

                # Visualizations
                if iter_counter.needs_printing():
                    losses = trainer.get_latest_losses()
                    visualizer.print_current_errors(epoch, iter_counter.epoch_iter,
                                                    losses, iter_counter.time_per_iter)
                    visualizer.plot_current_errors(losses, iter_counter.total_steps_so_far)

                if iter_counter.needs_displaying():
                    if opt.task == 'SIS':
                        visuals = OrderedDict([('input_label', data_i['label'][0]),
                                               ('synthesized_image', trainer.get_latest_generated()[0]),
                                               ('real_image', data_i['image'][0])])
                    else:
                        visuals = OrderedDict([('content', data_i['label'][0]),
                                               ('synthesized_image', trainer.get_latest_generated()[0]),
                                               ('style', data_i['image'][0])])
                    visualizer.display_current_results(visuals, epoch, iter_counter.total_steps_so_far)

                if iter_counter.needs_saving():
                    print('saving the latest model (epoch %d, total_steps %d)' %
                          (epoch, iter_counter.total_steps_so_far))
                    trainer.save('latest')
                    iter_counter.record_current_iter()

                # Visualizations and model saving as in the original script

                iteration += 1
                if iteration >= opt.max_iterations_per_epoch:
                    break

        trainer.update_learning_rate(epoch)
        iter_counter.record_epoch_end()
        progress.update(epoch_task,
                        description=f"[deep_pink4]Total Epochs[{epoch + 1}|{max(iter_counter.training_epochs())}]")

        if epoch % opt.save_epoch_freq == 0 or epoch == iter_counter.total_epochs:
            print('saving the model at the end of epoch %d, iters %d' %
                  (epoch, iter_counter.total_steps_so_far))
            trainer.save('latest')
            trainer.save(epoch)
    stop()

print('Training was successfully finished.')